Workflow
未来帧合成(Future Frame Synthesis
icon
Search documents
写了两万字综述 - 视频未来帧合成:从确定性到生成性方法
自动驾驶之心· 2025-07-08 12:45
Core Insights - The article discusses Future Frame Synthesis (FFS), which aims to generate future frames based on existing content, emphasizing the synthesis aspect and expanding the scope of video frame prediction [2][5] - It highlights the transition from deterministic methods to generative approaches in FFS, underscoring the increasing importance of generative models in producing realistic and diverse predictions [5][10] Group 1: Introduction to FFS - FFS aims to generate future frames from a series of historical frames or even a single context frame, with the learning objective seen as a core component of building world models [2][3] - The key challenge in FFS is designing models that efficiently balance complex scene dynamics and temporal coherence while minimizing inference delay and resource consumption [2][3] Group 2: Methodological Approaches - Early FFS methods followed two main design approaches: pixel-based methods that struggle with object appearance and disappearance, and methods that generate future frames from scratch but often lack high-level semantic context [3][4] - The article categorizes FFS methods into deterministic, stochastic, and generative paradigms, each representing different modeling approaches [8][9] Group 3: Challenges in FFS - FFS faces long-term challenges, including the need for algorithms that balance low-level pixel fidelity with high-level scene understanding, and the lack of reliable perception and randomness evaluation metrics [11][12] - The scarcity of high-quality, high-resolution datasets limits the ability of current video synthesis models to handle diverse and unseen scenarios [18][19] Group 4: Data Sets and Their Importance - The development of video synthesis models heavily relies on the diversity, quality, and characteristics of training datasets, with high-dimensional datasets providing greater variability and stronger generalization capabilities [21][22] - The article summarizes widely used datasets in video synthesis, highlighting their scale and available supervision signals [21][24] Group 5: Evaluation Metrics - Traditional low-level metrics like PSNR and SSIM often lead to blurry predictions, prompting researchers to explore alternative evaluation metrics that align better with human perception [12][14] - Recent comprehensive evaluation systems like VBench and FVMD have been proposed to assess video generation models from multiple aspects, including perceptual quality and motion consistency [14][15]