Workflow
范式转移(Paradigm Reformulation)
icon
Search documents
ICML 2025 Oral | NAS老树开新花,NUS提出智能体超网,成本狂降55%
机器之心· 2025-06-21 04:36
本文第一作者为张桂彬,新加坡国立大学25Fall计算机科学博士生;本文在南洋理工大学的王琨博士、上海人工智能实验室的白磊老师、和中国科学技术大学的王 翔教授指导下完成。 LLM 智能体的时代,单个 Agent 的能力已到瓶颈,组建像 "智能体天团" 一样的多智能体系统已经见证了广泛的成功。但 "天团" 不是人越多越好,手动设计既费 力又不讨好,现有的智能体自动化方法又只会 "一招鲜",拿一套复杂阵容应对所有问题,导致 "杀鸡用牛刀",成本高昂。 现在,一篇来自新加坡国立大学、上海 AI Lab、同济大学等机构并被 ICML 2025 接收为 Oral Presentation 的论文,为我们带来了全新的解题思路。 他们将神经网络架构搜索(NAS)的超网络(Supernet)思想引入 Agent 领域,首创了一个名为 "智能体超网"(Agentic Supernet)的概念。它不再寻找一个固定的 最佳 "阵容",而是根据任务难度,动态 "剪" 出一个量身定制的智能体团队。结果有多惊艳?性能超越现有方法最高 11.82%,推理成本却只有它们的 45%! Agentic Supernet: 论文地址:https:/ ...