通用视觉模型

Search documents
大模型时代,通用视觉模型将何去何从?
机器之心· 2025-07-02 00:54
Core Viewpoint - The article discusses the evolution of Vision Generalist Models (VGM) in the context of the rise of multimodal large models, emphasizing the need for a distinct focus on visual data despite the shift towards integrating visual modalities with language models [1][2]. Group 1: VGM Overview - VGM aims to create a unified framework capable of handling various visual tasks and modalities, similar to the success of large language models in natural language processing [7]. - VGM's key capability is its ability to process multimodal inputs, including images, point clouds, and videos, through a shared representation method [7][8]. - The model supports multiple visual tasks simultaneously, allowing for parallel processing within a single framework [8]. Group 2: Data, Tasks, and Evaluation - VGM utilizes large and diverse datasets for training and evaluation, covering various types of visual data to support multimodal learning [9]. - Visual tasks are categorized into four types: image tasks, geometric tasks, time series tasks, and other visual-related tasks [9]. - Modern evaluation methods focus on cross-task generalization and multimodal processing capabilities, differing from traditional single-task assessments [9]. Group 3: Model Design Paradigms - Existing VGM design paradigms focus on unifying different visual modality inputs and diverse task outputs, primarily categorized into encoding-based frameworks and sequence-to-sequence frameworks [12][13]. - Encoding-based frameworks create a shared feature space for different input modalities, while sequence-to-sequence frameworks are suitable for tasks with variable-length inputs and outputs [12][13]. Group 4: Current Progress and Future Directions - Current VGM research has made significant progress in unified processing of multiple tasks and modalities but faces challenges in optimizing framework design and improving training efficiency [16]. - Data acquisition and annotation remain bottlenecks for VGM development, with future research likely focusing on automated annotation techniques and large-scale unsupervised learning methods [16]. - Despite challenges, VGM shows extensive potential in practical applications, extending beyond traditional visual tasks to complex multimodal tasks across various fields such as intelligent surveillance, autonomous driving, and robotics [16].