Collective Intelligence
Search documents
一个邪修方法,帮你把用Agent的钱省掉80%。
数字生命卡兹克· 2025-08-13 01:05
Core Viewpoint - The article discusses the high costs associated with using AI agents like MiniMax, highlighting the need for a more sustainable business model that focuses on results rather than a pay-per-token system [2][5][11]. Group 1: Cost Concerns - Users express dissatisfaction with the high costs of using MiniMax Agent, with one user mentioning they have spent nearly 250 transactions [3][4]. - The current model charges users for every token consumed, regardless of the outcome, leading to frustration as users pay for uncertain results [9][10]. - A more sustainable model should reward successful outcomes and share the risk between service providers and users [12]. Group 2: Innovative Features - MiniMax has introduced a feature called "Publish to Gallery & Remix," allowing users to publish their projects for visibility and remix others' projects without starting from scratch [20][21]. - This feature reduces trial and error costs by enabling users to build on verified successful projects, thus transforming the creation process into a collaborative effort [49][61]. - The Remix function allows users to modify existing projects, significantly lowering the cost and time required to create new content [42][47]. Group 3: Market Positioning - MiniMax aims to transition from being a simple AI tool provider to an AI ecosystem creator, similar to platforms like GitHub that revolutionized software development [58][50]. - The introduction of the Remix feature is seen as a paradigm shift, enabling collective intelligence and reducing individual risk in project creation [62][63]. - The company is also engaging users through competitions, such as a $150,000 prize contest, showcasing confidence in its platform's capabilities [77][82].
Rethinking minds in the age of AI | Blaise Agüera y Arcas | TEDxCatawba
TEDx Talks· 2025-08-07 15:14
AI发展与演变 - AI最初的应用集中于Android和Pixel手机的AI功能,如面部解锁和音乐识别,但这些被认为是“狭义人工智能”[1][2][3] - 通过扩展统计模型,AI在2020-2021年取得了突破,如Mina和Lambda能够解决通用AI问题,这在一定程度上验证了神经科学中大脑是“自动补全”的理论[4][5] 生命与智能的计算本质 - 生命的复杂性源于信息存储和传输方式的改变,这与计算密切相关,冯·诺依曼的自复制自动机理论表明,生命的核心是通用图灵机,即计算机[11][12][13][14][15][16] - 一项研究表明,自复制程序可以从简单的相互作用中产生,这为生命起源提供了自然主义解释,最初只有8,000个长度为64的随机磁带,经过数百万次的交互后,复杂的自复制程序涌现[17][18][19][20][21][22][23][24][25][26][27][28] 复杂性与合作的涌现 - 复杂性的提升是通过共生实现的,例如真核细胞由线粒体进入其他细胞形成,同样的,在模拟实验中,单个字节通过合作形成更强大的复制单元,这种团队合作是进化的关键[31][32][33][34] - 智能的提升也与合作和竞争有关,社会智能的爆发不仅发生在人类中,也发生在鲸鱼和鹦鹉等动物中,扩大合作和竞争是智能和复杂性提升的方式[35][36][37] AI与人类的共生关系 - AI并非外来入侵者,而是人类经验的产物,与人类一样具有计算性,是地球上持续了超过40亿年的进化过程的一部分[39][40] - 人类社会作为一个整体是智能的,AI日益成为这种集体智能结构的一部分,人类与AI之间的共生关系可能带来挑战,但最终将是丰富和积极的[41][42]