Data Movement
Search documents
How DDN Supercharges GPU Productivity for Training, Inference & AI Factories | James Coomer
DDN· 2025-12-02 17:48
AI Infrastructure Challenges & Solutions - Data bottlenecks constrain GPU performance in AI training and inference, leading to wasted resources and reduced productivity [2][4][5][11] - DDN addresses these bottlenecks by optimizing data movement through fast storage systems and integration with AI frameworks and hardware like Nvidia [5][6] - Inference is becoming increasingly important, with spending expected to surpass training systems, posing challenges in model loading, RAG (Retrieval Augmented Generation), and KV cache management [7][8][9] - DDN Core combines Exascaler for training and Infinia for data management to provide a seamless AI experience [13][14] DDN's Value Proposition - DDN's solutions improve data center efficiency by increasing "answers per watt," delivering more compute with less energy consumption [12][13] - DDN handles KV cache, increasing the effective memory of GPU systems and improving productivity by up to 60% in large-scale GPU data centers [9][10] - DDN offers fast-track solutions for enterprises to adopt AI, whether on the cloud or on-premise, through partnerships like the one with Google Cloud [15][16][17] - DDN's platform supports various use cases, including HPC, AI training and inference, research data management, and secure data sharing [19][20] Strategic Considerations - DDN emphasizes the importance of considering data first when building AI at scale, advocating for data desiloing and secure access [28][29] - DDN supports sovereign AI, enabling nations to develop AI models relevant to their specific data, language, and culture while ensuring security and data sharing [20][21][22] - Partnerships are crucial for delivering efficient AI solutions tailored to customer preferences, whether cloud, on-premise, or hybrid [23][24] - AI factories, which integrate data preparation, training, simulation, and production, present complex data challenges where DDN excels [25][26][27]