Workflow
Full-stack AI Engineering
icon
Search documents
X @Avi Chawla
Avi Chawla· 2025-10-16 19:17
AI Engineering Fundamentals - Industry emphasizes the importance of coding fundamentals, including Python, Bash, Git, and testing as a starting point for AI engineers [4] - Focus on understanding and utilizing LLM APIs for structured outputs, caching, and system prompts [4] - Industry highlights the necessity of augmenting LLMs with additional information through fine-tuning, RAG (Retrieval-Augmented Generation), and prompt/context engineering [4] Retrieval and RAG Techniques - Industry stresses the significance of retrieval techniques, including vector databases, hybrid retrieval, and indexing strategies, for providing context to LLMs [4] - Industry focuses on building retrieval and generation pipelines, reranking, and multi-step retrieval using orchestration frameworks [2] - After solid retrieval, industry moves into RAG (Retrieval-Augmented Generation) [4] AI Agents and Production Deployment - Industry explores AI Agents, focusing on memory, multi-agent systems, human-in-the-loop design, and agentic patterns [4] - Industry emphasizes shipping AI systems in production with infrastructure, including CI/CD, containers, model routing, Kubernetes, and deployment at scale [4] - Industry prioritizes observability, evaluation, and security, including guardrails, sandboxing, prompt injection defenses, and ethical guidelines [3][4] Advanced AI Workflows - Industry explores advanced workflows, including voice & vision agents, CLI agents, robotics, agent swarms, and self-refining AI systems [4]
X @Avi Chawla
Avi Chawla· 2025-09-20 06:33
The ultimate Full-stack AI Engineering roadmap to go from 0 to 100.This is the exact mapped-out path on what it actually takes to go from Beginner → Full-Stack AI Engineer.> Start with Coding Fundamentals.> Learn Python, Bash, Git, and testing.> Every strong AI engineer starts with fundamentals.> Learn how to interact with models by understanding LLM APIs.> This will teach you structured outputs, caching, system prompts, etc.> APIs are great, but raw LLMs still need the latest info to be effective.> Learn h ...