Langchain deep research agent

Search documents
Open Deep Research
LangChainยท 2025-07-16 16:01
Agent Architecture & Functionality - The Langchain deep research agent is highly configurable and open source, allowing for customization to specific use cases [1] - The agent operates in three main phases: scoping the problem, research, and report writing [3] - The research phase utilizes a supervisor to delegate tasks to sub-agents for in-depth research on specific subtopics [4] - Sub-agents use a tool calling loop, which can be configured with default or custom tools (like MCP servers) for searching flights, hotels, etc [17][18] - A compression step is used by sub-agents to synthesize research findings into comprehensive mini-reports before returning to the supervisor, mitigating context window overload [21][23] - The supervisor analyzes findings from sub-agents to either complete research or continue with follow-up questions [25] - Final report generation is done in a single shot using all condensed research findings [5][27] Implementation & Configuration - The agent is built on Langraph and can be run locally by cloning the Open Deep Research repository [29] - Configuration involves setting API keys for models (default OpenAI) and search tools (default Tavily) [30] - Langraph Studio can be used for iterating and testing the agent with different configurations [32] - The agent is highly configurable, allowing users to choose between default or model provider native search tools, connect to MCP servers, and select models for different steps [33][34] Application & Output - The agent can be used for complex research tasks, such as planning a trip, by iteratively calling tools and searching the web [2] - The agent provides a final report with an overview, flight options, transportation options, accommodation options with booking links, a sample itinerary, and a list of sources [36] - Open Agent Platform provides a UI to configure and try out the research agent without cloning the code [37]