Workflow
端到端自动驾驶(E2E Autonomous Driving)
icon
Search documents
资料汇总 | VLM-世界模型-端到端
自动驾驶之心· 2025-07-12 12:00
Core Insights - The article discusses the advancements and applications of visual language models (VLMs) and large language models (LLMs) in the field of autonomous driving and intelligent transportation systems [1][2]. Summary by Sections Overview of Visual Language Models - Visual language models are becoming increasingly important in the context of autonomous driving, enabling better understanding and interaction between visual data and language [4][10]. Recent Research and Developments - Several recent papers presented at conferences like CVPR and NeurIPS focus on improving the performance of VLMs through various techniques such as behavior alignment, efficient pre-training, and enhancing compositionality [5][7][10]. Applications in Autonomous Driving - The integration of LLMs and VLMs is expected to enhance various tasks in autonomous driving, including object detection, scene understanding, and planning [10][13]. World Models in Autonomous Driving - World models are being developed to improve the representation and prediction of driving scenarios, with innovations like DrivingGPT and DriveDreamer enhancing scene understanding and video generation capabilities [10][13]. Knowledge Distillation and Transfer Learning - Techniques such as knowledge distillation and transfer learning are being explored to optimize the performance of vision-language models in multi-task settings [8][9]. Community and Collaboration - A growing community of researchers and companies is focusing on the development of autonomous driving technologies, with numerous resources and collaborative platforms available for knowledge sharing and innovation [17][19].