Workflow
Diffusion LLM
icon
Search documents
挑战 next token prediction,Diffusion LLM 够格吗?
机器之心· 2025-06-08 02:11
Group 1 - The article discusses the potential of Diffusion LLMs, particularly Gemini Diffusion, as a significant breakthrough in AI, challenging traditional autoregressive models [3][4][5] - Gemini Diffusion demonstrates high generation efficiency, achieving an average sampling speed of 1479 TPS and up to 2000 TPS in encoding tasks, outperforming Gemini 2.0 Flash-Lite by 4-5 times [4][6] - The parallel generation mechanism of the diffusion architecture allows for efficient processing, which could lead to reduced computational costs compared to autoregressive models [6][7] Group 2 - Mary Meeker emphasizes that the speed of AI development surpasses that of the internet era, highlighting the cost disparity between AI model training and inference [1][2] - The article suggests that the rise of open-source models in China may impact the global supply chain, indicating a shift in competitive dynamics within the industry [1][2] - The balance between computational investment and commercial returns is crucial for enterprises as AI inference costs decline [1][2]