Tou Bao Yan Jiu Yuan
Search documents
电力设备制造系列:可控核聚变设备:人类终极能源,资本争相涌入(摘要版)
Tou Bao Yan Jiu Yuan· 2024-08-22 13:11
www.leadleo.com 头豹市场研究| 2024/04 电力设备制造系列: 可控核聚变设备:人类终极能源,资 本争相涌入 2024 Global Controlled nuclear fusion Industry research report 2024年全球制御核融合研究レポート 报告标签:核聚变、核能、核反应、反应堆 撰写人:马天奇 报告提供的任何内容(包括但不限于数据、文字、图表、图像等)均系头豹研究院独有的高度机密性文件 (在报告中另行标明出处者除外)。未经头豹研究院事先书面许可,任何人不得以任何方式擅自复制、再 造、传播、出版、引用、改编、汇编本报告内容,若有违反上述约定的行为发生,头豹研究院保留采取法 律措施、追究相关人员责任的权利。头豹研究院开展的所有商业活动均使用"头豹研究院"或"头豹"的商号、 商标,头豹研究院无任何前述名称之外的其他分支机构,也未授权或聘用其他任何第三方代表头豹研究院 开展商业活动。 (摘要版) 头豹市场研读 | 2024/05 观点摘要 可控核聚变设备行业正处于技术突破和商业化应用的关键阶段,尽管面临高温等离子体稳定 控制、材料耐高温与辐射性能提升以及能量输出效 ...
“钙DK”同补理念盛行,引导老年骨骼健康产品生产企业积极布局 头豹词条报告系列
Tou Bao Yan Jiu Yuan· 2024-08-22 13:01
2024年 头豹行业词条报告 报告提供的任何内容(包括但不限于数据、文字、图表、图像等)均系头豹研究院独有的高度 机密性文件(在报告中另行标明出处者除外)。未经头豹研究院事先书面许可,任何人不得以 任何方式擅自复制、再造、传播、出版、引用、改编、汇编本报告内容,若有违反上述约定的 行为发生,头豹研究院保留采取法律措施、追究相关人员责任的权利。头豹研究院开展的所有 商业活动均使用"头豹研究院"或"头豹"的商号、商标,头豹研究院无任何前述名称之外的 其他分支机构,也未授权或聘用其他任何第三方代表头豹研究院开展商业活动。 Copyright © 2024 头豹 Leadleo.com 产企业积极布局 头豹词条报告系列 "钙DK"同补理念盛行,引导老年骨骼健康产品生 荆婧 · 头豹分析师 2024-08-01 未经平台授权,禁止转载 版权有问题?点此投诉 行业: 制造业/医药制造业/保健及康复食品制造 消费品制造/医疗保健 关键词: 骨质疏松 骨关节炎 钙 氨糖 软骨素 维生素D 维生素K | --- | --- | --- | --- | |------------------------------------- ...
工业上楼:垂直整合新趋势,驱动产业升级新高度 头豹词条报告系列
Tou Bao Yan Jiu Yuan· 2024-08-22 13:00
头豹 LeadLeo 2024年 头豹行业词条报告 报告提供的任何内容(包括但不限于数据、文字、图表、图像等)均系头豹研究院独有的高度 机密性文件(在报告中另行标明出处者除外)。未经头豹研究院事先书面许可,任何人不得以 任何方式擅自复制、再造、传播、出版、引用、改编、汇编本报告内容,若有违反上述约定的 行为发生,头豹研究院保留采取法律措施、追究相关人员责任的权利。头豹研究院开展的所有 商业活动均使用"头豹研究院"或"头豹"的商号、商标,头豹研究院无任何前述名称之外的 其他分支机构,也未授权或聘用其他任何第三方代表头豹研究院开展商业活动。 Copyright © 2024 头豹 Leadleo.com 工业上楼:垂直整合新趋势,驱动产业升级新高度 头豹词条报告系列 陈祖杰 · 共创作者 2024-08-01 未经平台授权,禁止转载 陈 行业: 建筑业/建筑安装业/其他建筑安装业 地产建筑/建筑 版权有问题?点此投诉 | --- | --- | --- | --- | |-------------------------|--------------------------|------------------- ...
中国压力计行业市场规模测算逻辑模型 头豹词条报告系列
Tou Bao Yan Jiu Yuan· 2024-08-22 13:00
中国压力计行业市场规模测算逻辑 模型 头豹词条报告系列 张宇彤 发布日期:2024/08/16 压力计行业规模 1. 压力计行业规模 (结论图) P314. 网络通信市场规模 P16 2. 压力计行业规模 P4 15. 网络通信领域压力计规模 P17 3. 中国传统燃油汽车销售量 P5 16. 电子类消费产品市场规模 P18 4. 压力计渗透率 P6 17. 电子类消费产品压力计规模 P19 5. 中国传统燃油汽车保有量 P7 18. 溯源信息链接引用 P20 6. 中国新能源汽车销售量 P8 19. 溯源信息链接引用 P21 7. 压力计 P9 20. 溯源信息链接引用 P22 8. 中国新能源汽车保有量 P10 21. 法律声明 P23 9. 汽车电子领域压力计规模 P11 22. 头豹研究院简介 P24 10. 中国医疗电子市场规模 P12 23. 头豹词条介绍 P25 11. 医疗电子领域压力计规模 P13 24. 头豹词条报告 P26 12. 工业控制市场规模 P14 13. 工业控制领域压力计规模 P15 ሙ 1. 压力计行业规模(结论图) 中国传统燃油汽车销 售量 A 中国医疗电子市场规 医疗电 ...
2024年中国补充维生素类保健食品行业概览报告:银发经济兴起,维生素补充剂前景广阔
Tou Bao Yan Jiu Yuan· 2024-08-21 13:12
Investment Rating - The report does not explicitly state an investment rating for the vitamin supplement industry in China. Core Insights - The vitamin supplement industry in China has seen significant growth, with the market size increasing from 95 billion yuan in 2019 to 103.9 billion yuan in 2023, reflecting a CAGR of 2.3%. The market is expected to continue growing, reaching approximately 119.9 billion yuan by 2028, with a projected CAGR of 3.1% [3][33][35]. Industry Overview - Vitamins are essential nutrients for maintaining normal bodily functions, and the vitamin supplement market has been developing for a long time, surpassing a market size of 100 billion yuan by 2021 [3][30]. - The aging population presents a significant opportunity for the vitamin supplement market, as older adults often face nutritional deficiencies due to imbalanced diets [5][35]. - The government is actively promoting the silver economy, which is expected to positively impact both supply and demand in the vitamin supplement industry [6][35][38]. Market Size - The market for vitamin supplements in China has grown from 95.3 billion yuan in 2019 to 103.9 billion yuan in 2023, with a forecasted increase to 106.3 billion yuan in 2024 and 119.9 billion yuan by 2028 [33][30]. - The consumer base for vitamin supplements reached 220 million in 2023 and is expected to grow to 230 million by 2028, driven by increased health awareness [33][35]. Industry Chain Analysis - The vitamin supplement industry in China has a complete supply chain, with upstream suppliers providing raw materials, midstream manufacturers offering product solutions, and downstream channels including retail and direct-to-consumer sales [42][44]. - The focus on innovative and effective formulations, particularly those that promote bone health, is driving growth in the upstream raw material sector [44][47]. Competitive Landscape - The report highlights that vitamin D and vitamin C supplements dominate the market due to their multiple health benefits, with a significant number of products approved for these categories [51][57]. - The purchasing behavior of consumers is becoming more rational, with a focus on product functionality and safety, indicating a trend towards more specialized and targeted vitamin supplement products [57][58].
中国碳化硅辊棒行业市场规模测算逻辑模型 头豹词条报告系列
Tou Bao Yan Jiu Yuan· 2024-08-21 13:02
中国碳化硅辊棒行业市场规模测算 逻辑模型 头豹词条报告系列 张诗悦 发布日期:2024/08/16 碳化硅辊棒行业规模 1. 碳化硅辊棒规模 (结论图) P314. 溯源信息链接引用 P16 2. 碳化硅辊棒规模 P4 15. 法律声明 P17 3. 单个窑炉每年辊棒损耗率 P5 16. 头豹研究院简介 P18 4. 三元电池产量 P6 17. 头豹词条介绍 P19 5. 三元正极材料单耗 P7 18. 头豹词条报告 P20 6. 三元正极材料产量 P8 7. 单个窑炉产能 P9 8. 窑炉需求量 P10 9. 单个窑炉对碳化硅辊棒的需求量 P11 10. 碳化硅辊棒需求量 P12 11. 窑炉碳化硅辊棒损耗需求量 P13 12. 碳化硅辊棒需求总量 P14 13. 碳化硅辊棒价格 P15 ሙ 1. 碳化硅辊棒规模(结论图) 窑炉碳化硅辊棒损耗 需求量 | = H*G 砖化硅辊棒需求总量 J = I+G 碳化硅辊棒规模 结论 = J*K 碳化硅辊棒价格 K 砖化硅辊棒需求量 G = E*F 单个窑炉每年辊棒损 三元电池产量 耗率 H = 4 A 三元正极材料产量 C = A*B 窑炉需求量 三元正极材料单耗 ...
西地那非:传统“伟哥”治疗潜力仍值得期待 头豹词条报告系列
Tou Bao Yan Jiu Yuan· 2024-08-21 12:39
| --- | --- | --- | |-------|-------------------------|-------| | | | | | | 2024年 头豹行业词条报告 | | Leadleo.com 西地那非:传统"伟哥"治疗潜力仍值得期待 头 豹词条报告系列 钟琪 · 头豹分析师 2024-08-01 未经平台授权,禁止转载 行业: 制造业/医药制造业 消费品制造/医疗保健 版权有问题?点此投诉 | --- | --- | --- | --- | --- | --- | |----------|-----------------------------------------------------------|----------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------| | | 行业定义 西地那非(Si ...
榨菜:轻盐健康时代,行业新增量何在? 头豹词条报告系列
Tou Bao Yan Jiu Yuan· 2024-08-21 12:30
2024年 头豹行业词条报告 报告提供的任何内容(包括但不限于数据、文字、图表、图像等)均系头豹研究院独有的高度 机密性文件(在报告中另行标明出处者除外)。未经头豹研究院事先书面许可,任何人不得以 任何方式擅自复制、再造、传播、出版、引用、改编、汇编本报告内容,若有违反上述约定的 行为发生,头豹研究院保留采取法律措施、追究相关人员责任的权利。头豹研究院开展的所有 商业活动均使用"头豹研究院"或"头豹"的商号、商标,头豹研究院无任何前述名称之外的 其他分支机构,也未授权或聘用其他任何第三方代表头豹研究院开展商业活动。 Copyright © 2024 头豹 榨菜:轻盐健康时代,行业新增量何在? 头豹词 条报告系列 版权有问题?点此投诉 Leadleo.com 黄之婧 · 头豹分析师 2024-08-02 未经平台授权,禁止转载 行业: 批发和零售业/零售业/食品、饮料及烟草制品专门零售 消费品制造/食品饮料 | --- | --- | --- | --- | |--------------------------|--------------------------|---------------------- ...
口腔颌面锥形束计算机体层摄影设备(CBCT):开启口腔精准治疗新时代 头豹词条报告系列
Tou Bao Yan Jiu Yuan· 2024-08-20 12:30
2024年 头豹行业词条报告 报告提供的任何内容(包括但不限于数据、文字、图表、图像等)均系头豹研究院独有的高度 机密性文件(在报告中另行标明出处者除外)。未经头豹研究院事先书面许可,任何人不得以 任何方式擅自复制、再造、传播、出版、引用、改编、汇编本报告内容,若有违反上述约定的 行为发生,头豹研究院保留采取法律措施、追究相关人员责任的权利。头豹研究院开展的所有 商业活动均使用"头豹研究院"或"头豹"的商号、商标,头豹研究院无任何前述名称之外的 其他分支机构,也未授权或聘用其他任何第三方代表头豹研究院开展商业活动。 Copyright © 2024 头豹 Leadleo.com 开启口腔精准治疗新时代 头豹词条报告系列 口腔颌面锥形束计算机体层摄影设备(CBCT): 罗潘林 · 头豹分析师 2024-08-01 未经平台授权,禁止转载 行业: 制造业/专用设备制造业/医疗设备制造/诊断类医疗设备制造 消费品制造/医疗保健 版权有问题?点此投诉 | --- | --- | --- | --- | |-------------------------------------------------|------- ...
2024年中国端侧大模型行业研究:算力优化与效率革命 如何重塑行业生态
Tou Bao Yan Jiu Yuan· 2024-08-20 12:30
Industry Overview - The end-side large model is defined as a large-scale AI model running on the device side, typically deployed on local devices such as smartphones, IoT, PCs, and robots, with smaller parameter sizes compared to traditional cloud-based large models, enabling direct computation on the device without relying on cloud resources [4][11] - The end-side large model market in China reached 800 million yuan in 2023 and is expected to grow to 2.1 billion yuan in 2024, driven by strong downstream demand, particularly in the smartphone and autonomous driving industries [4][17] - End-side large models offer significant advantages in cost, energy efficiency, reliability, privacy, and personalization compared to cloud-based inference, making them suitable for personalized AI applications [4][15] Industry Drivers - The shift of AI processing to the edge is driven by cost advantages, energy efficiency, reliability, performance, latency, privacy, security, and personalization [16] - The cost of AI inference is significantly higher than training, and edge terminals can provide leading energy efficiency, especially compared to cloud-based solutions [16] - End-side AI processing can offer comparable or even better performance than cloud-based solutions, especially during peak demand periods, reducing latency and improving reliability [16] - End-side large models inherently protect user privacy by keeping queries and personal information on the device, which is crucial for enterprise and workplace applications [16] - Personalization is enhanced as digital assistants can tailor services based on user preferences and behaviors without compromising privacy [16] Market Size and Growth - The end-side large model market in China is projected to grow from 800 million yuan in 2023 to 2.1 billion yuan in 2024, with a CAGR of 58% [17] - The growth is driven by the rapid development of the smartphone and autonomous driving industries, which are integrating advanced AI functionalities to enhance user experience and safety [17][18] - The global AI chip market, which supports end-side large models, reached 20 billion USD in 2021 and is expected to exceed 70 billion USD by 2025, with end-side AI chips becoming a significant growth driver [18] Industry Chain Analysis - The upstream of the end-side large model industry includes AI chip suppliers, cloud computing service providers, and data service providers, while the midstream consists of end-side large model technology companies and end-side technology enterprises [20][21] - The downstream applications span across various industries such as finance, automotive, healthcare, education, and entertainment, with end-side large models being deployed in devices like smartphones, IoT devices, and robots [21] - Model compression technologies, such as knowledge distillation, pruning, and quantization, are crucial for reducing the parameter size and computational complexity of end-side large models, enabling them to run efficiently on resource-constrained devices [22][24] Cost Structure - The cost structure of end-side large models includes hardware costs, such as AI chips, which are essential for accelerating deep learning tasks and reducing energy consumption and latency [27] - R&D costs, including personnel and GPU expenses, are significant, with the average annual salary of a deep learning engineer in the US being approximately 140,000 USD, and high-end GPUs like NVIDIA GeForce RTX 3090 costing around 1,500 USD [28] - Other costs include management, operational, and marketing expenses, which are necessary for the sustainable development of end-side large model projects [25][26] Industry Scenarios - The adoption of end-side large models is influenced by industry-specific demands for data security, privacy protection, the prevalence of smart devices, and the maturity of AI large model technologies [29][31] - Industries with high data security requirements, such as finance, healthcare, and government, are expected to see significant growth in end-side large model applications [30] - The increasing prevalence of smart devices, such as home health monitoring devices, is driving the demand for end-side AI applications, particularly in sectors like education and healthcare [32] Business Scenarios - End-side large models are particularly suited for applications requiring low latency, real-time computation, and high levels of personalization, such as AI smartphones, autonomous driving, and robotics [33] - In AI smartphones, end-side large models enhance privacy and reduce latency by processing data locally, improving user experience in applications like voice assistants and image recognition [34] - Autonomous driving benefits from end-side large models by enabling real-time decision-making and improving safety, as the models can process data locally without relying on cloud connectivity [34] - Robotics applications, especially in home service and healthcare, leverage end-side large models to provide personalized services and improve efficiency by processing data locally and adapting to user behavior [35] Competitive Landscape - Leading large model companies, such as SenseTime, Alibaba, and FaceWall Intelligence, are leveraging their technical expertise and ecosystem advantages to dominate the end-side large model market [42][43] - These companies are using advanced technologies like algorithm optimization and model compression to overcome the computational limitations of end-side devices, enabling complex AI functionalities to run efficiently on mobile and IoT platforms [43] - The competitive landscape is expected to intensify with the integration of cross-domain technologies, such as natural language processing, computer vision, and edge computing, driving innovation in end-side large model solutions [44] - Ecosystem building and innovative cooperation models, such as joint R&D and data sharing agreements, are becoming key factors in shaping the competitive landscape, with end-side large models driving the growth of the AI chip market, which is expected to reach 2.286 billion units globally in 2023 [45] Policy Environment - The Chinese government has positioned the AI industry as a core national strategy, with supportive policies for AI infrastructure and generative AI, creating a favorable environment for the development of end-side large models [40][41] - Policies such as the "Management Measures for Generative AI Services" and the "Overall Layout Plan for Digital China Construction" provide regulatory guidance and support for the development of end-side large models, emphasizing data security, privacy protection, and technological innovation [41]