Workflow
我国氢硼聚变实验取得新突破

Core Insights - The "Xuanlong-50U" spherical tokamak fusion device developed by Xin'ao has achieved a significant breakthrough by realizing high-temperature, high-density million-ampere plasma current, marking an important step towards the commercialization of hydrogen-boron fusion [1] - This experiment represents the first instance of achieving high-performance parameters for million-ampere hydrogen-boron plasma discharge internationally, positioning China among the top three countries with megampere spherical tokamak devices [1] Group 1 - The "Xuanlong-50U" device is China's first medium-scale spherical tokamak experimental facility, designed and built independently in 2019, and upgraded from the previous "Xuanlong" device [1] - The device was completed by the end of 2023 and exceeded its expected plasma current targets in August 2024, with plans to focus on high-parameter hydrogen-boron plasma discharge research starting in 2025 [1] - The experiment utilized high-concentration hydrogen-boron fuel, achieving plasma electron temperatures of 40 million degrees Celsius and a density of 1×10^20 m^-3, while also addressing technical challenges in efficiently generating spherical tokamak plasma currents [1] Group 2 - The Xin'ao fusion research team aims to achieve even higher hydrogen-boron plasma parameters, targeting ion temperatures of 100 million degrees Celsius by 2026, and generating a certain number of 200 keV high-energy protons for hydrogen-boron fusion reaction experiments [2] - The "Helong-2" device has been designed with a goal of reaching ion temperatures of 500 million degrees Celsius to comprehensively validate the feasibility of hydrogen-boron fusion [2] - The spherical tokamak hydrogen-boron fusion technology route has been incorporated into the national fusion energy strategy, with magnetic confinement spherical tokamak hydrogen-boron fusion being one of the three key research routes proposed by the Ministry of Science and Technology [2]