Workflow
AI推理时代 边缘云不再“边缘”
Zhong Guo Jing Ying Bao·2025-05-09 15:09

Core Insights - The rise of edge cloud technology is revolutionizing data processing by shifting capabilities closer to the network edge, enhancing real-time data response and processing, particularly in the context of AI inference [1][5] - The demand for AI inference is significantly higher than for training, with estimates suggesting that inference computing needs could be 10 times greater than training needs [1][3] - Companies are increasingly focusing on the post-training phase and deployment issues, as edge cloud solutions improve the efficiency and security of AI inference [1][5] Group 1: AI Inference Demand - AI inference is expected to account for over 70% of total computing demand for general artificial intelligence, potentially reaching 4.5 times the demand for training [3] - The founder of NVIDIA predicts that the computational requirements for inference will exceed previous estimates by 100 times [3] - The transition from pre-training to inference is becoming evident, with industry predictions indicating that future investments in AI inference will surpass those in training by 10 times [4][6] Group 2: Edge Cloud Advantages - Edge cloud environments provide significant advantages for AI inference due to their proximity to end-users, which enhances response speed and efficiency [5][6] - The geographical distribution of edge cloud nodes reduces data transmission costs and improves user experience by shortening interaction chains [5] - Edge cloud solutions support business continuity and offer additional capabilities such as edge caching and security protection, enhancing the deployment and application of AI models [5][6] Group 3: Cost and Performance Metrics - Future market competition will hinge on cost/performance calculations, including inference costs, latency, and throughput [6] - Running AI applications closer to users improves user experience and operational efficiency, addressing concerns about data sovereignty and high data transmission costs [6] - The shift in investment focus within the AI sector is moving towards inference capabilities rather than solely on training [6]