Workflow
谈谈AI 项目中需要关注的基本数据质量能力
3 6 Ke·2025-08-01 10:43

围绕人工智能 (AI)和大型语言模型 (LLM)的最初热潮已开始成熟。尽管基础的 LLM 本身正在迅速商品化,并通过API 和开 源版本日益普及,但人工智能创新的步伐却远未放缓。相反,该行业的重点已急剧转向构建复杂的数据和人工智能解决方 案,以提供可观的投资回报率 (ROI)和切实的商业价值,并 从单纯的实验转向战略实施。 企业最有防御力的竞争"护城河"在于其专有数据资产。 然而,这种战略优势在很大程度上取决于数据是否具有明显的高质量、可靠的一致性、丰富的上下文和严格的安全性。 数据固有的动态性意味着信息永远不会静止。随着数据流经复杂的工作流程,从源系统经过各种转换最终到达下游目标,这 些关键数据管道的完整性和功能性可能会在其整个生命周期内反复显著下降。这种恶化通常源于多种因素,包括意外的上游 数据模式变更、新字段的引入或底层业务逻辑的修改。至关重要的是,持续稳健地跟踪和管理这些变化,能够提供对数据整 个沿袭和演变的深刻洞察。这种在单个数据管道和数据集层面保持的整体理解,对于确保持续的可靠性、实现有效的故障排 除以及培养对下游分析产品的坚定信任至关重要。 本 文 探讨了全面的数据质量和可靠性框架应包含哪些内容 ...