Workflow
浪潮信息“元脑SD200”超节点实现单机内运行超万亿参数大模型
LCXXLCXX(SZ:000977) Ke Ji Ri Bao·2025-08-09 10:21

Core Viewpoint - Inspur Information has launched the "Yuan Nao SD200," a super-node AI server designed for trillion-parameter large models, addressing the growing computational demands of AI systems [2][3]. Group 1: Product Features - The "Yuan Nao SD200" utilizes a multi-host low-latency memory semantic communication architecture, supporting 64 local GPU chips and enabling the operation of trillion-parameter models on a single machine [2]. - The super-node integrates multiple servers and computing chips into a larger computational unit, enhancing overall efficiency, communication bandwidth, and space utilization through optimized interconnect technology and liquid cooling [2][3]. Group 2: Industry Challenges - The rapid increase in model parameters and sequence lengths necessitates intelligent computing systems with vast memory capacity, as traditional architectures struggle to meet the demands of efficient, low-power, and large-scale AI computations [3]. - The shift towards multi-model collaboration in AI requires systems capable of handling significantly increased data token generation, leading to a surge in computational requirements [3]. Group 3: Technological Innovation - The "Yuan Nao SD200" addresses the core needs for large memory space and low communication latency for trillion-parameter models through an open bus switching technology [3][4]. - The server's performance is enhanced through a software-hardware collaborative system, achieving super-linear performance improvements of 3.7 times for the DeepSeek R1 model and 1.7 times for the Kimi K2 model [4]. Group 4: Ecosystem Development - The advancement of open-source models is accelerating the transition to an intelligent era, necessitating higher demands on computational infrastructure [4]. - Inspur Information aims to foster innovation across the supply chain by utilizing high-speed connectors and cables, thereby enhancing the overall industry ecosystem and competitiveness [4].