Quantum Internet Overview - The white paper outlines the technical foundation, architecture design, key technologies, and the synergy between quantum computing and networking, providing a reference for the engineering realization of quantum internet [1][24]. - Quantum internet is defined as a network connecting quantum nodes to support applications that classical internet cannot achieve, currently in its early stages with immature hardware and software [4][24]. Quantum Information Technology Basics - Core concepts include quantum mechanics principles such as superposition, entanglement, quantum operations, and quantum measurement, which are essential for quantum computing and communication [1][2]. - Quantum state evolution follows the Schrödinger equation, providing theoretical support for quantum computing and communication [1]. Typical Quantum Applications - Quantum communication includes quantum key distribution (QKD), quantum teleportation, and quantum secure direct communication (QSDC), ensuring secure information transfer [2][51]. - Quantum computing utilizes quantum superposition for parallel computation, currently in the Noisy Intermediate-Scale Quantum (NISQ) stage, with key algorithms like Shor's and Grover's [2][65]. - Quantum precision measurement aims to surpass the standard quantum limit, with applications in global quantum clock networks and long-baseline telescopes [2]. Quantum Internet Architecture and Key Technologies - The architecture of quantum internet is still developing, with various stages proposed by researchers, including trusted relay and entanglement distribution [4]. - Quantum relay technology is categorized into four generations, addressing long-distance quantum signal attenuation [5][6]. Quantum Internet Protocol Stack - Different research teams propose varied protocol stacks, adapting classic internet architecture to quantum needs, with layers for physical, link, network, and application [7]. Initial Quantum Internet Operation Mode Design - A centralized control scheme is proposed for initial quantum devices, focusing on network layout and node types to manage limited resources effectively [9][10]. Quantum Application Protocol Examples - The BBM92 protocol for quantum key distribution involves a process of path selection, entanglement channel construction, and security checks to generate a secure key [12][13]. - Distributed quantum computing connects multiple quantum processors through entangled channels, overcoming limitations of single-chip systems [14]. Quantum Computing and Networking Synergy - The trend towards quantum cloud computing and integration with supercomputing highlights the need for resource modeling and scheduling frameworks to optimize quantum and classical resource allocation [15][16]. - The necessity for collaboration arises from high fidelity requirements and short coherence times in quantum applications, demanding precise communication timing [16]. Summary and Outlook - The current stage of quantum internet development faces challenges in practical quantum relay and data exchange technologies, with potential cost reductions through the reuse of classical internet infrastructure [18]. - Future directions include breakthroughs in quantum relay and error correction, as well as the development of a resource modeling and scheduling system to support large-scale quantum applications [19].
2025年未来网络发展大会:量子互联网与算网协同体系架构白皮书
Sou Hu Cai Jing·2025-08-25 08:29