Core Insights - The next wave of AI will focus on selling returns rather than tools, emphasizing the importance of enterprise-level AI applications for maximizing profits [2][3] - Successful enterprise-level AI implementation requires three essential elements: models, data, and application scenarios [3][4] Models - The effectiveness of AI models is not solely determined by their size; businesses should select models based on specific scenarios [3] - As businesses mature in their AI journey, they will shift from paying for advanced models to paying for the commercial value generated by these models [3] Data - High-quality data is crucial for AI success; companies must ensure they have integrated and effective data to leverage AI capabilities [4] - Synthetic data can help address initial data shortages, allowing for quicker AI application deployment [4][7] Application Scenarios - The true value of AI models lies in their application scenarios, similar to how electricity's value is realized through its various uses [5] - Companies should prioritize identifying the most suitable business scenarios for AI transformation to achieve rapid deployment [5][8] Industry Developments - Major companies like Huawei and Alibaba Cloud are launching industrial AI solutions that significantly enhance operational efficiency [6][10] - The industrial sector is witnessing a shift towards AI integration, with government support for AI+ industrial software initiatives [8] Intelligent Agents - The industrial sector is characterized by four main types of intelligent agent applications: data governance, knowledge processing, process optimization, and decision support [11][12] - The current applications of intelligent agents are primarily in knowledge-intensive areas, where high-quality data is essential for further development [13]
模型、数据、场景,企业级 AI 落地三要素