Workflow
LLM也具有身份认同?当LLM发现博弈对手是自己时,行为变化了
3 6 Ke·2025-09-01 02:29

Core Insights - The research conducted by Columbia University and Montreal Polytechnic reveals that LLMs (Large Language Models) exhibit changes in cooperation tendencies based on whether they believe they are competing against themselves or another AI [1][29]. Group 1: Research Methodology - The study utilized an Iterated Public Goods Game, a variant of the Public Goods Game, to analyze LLM behavior in cooperative settings [2][3]. - The game involved multiple rounds where each model could contribute tokens to a public pool, with the total contributions multiplied by a factor of 1.6 and then evenly distributed among players [3][4]. - The research was structured into three distinct studies, each examining different conditions and configurations of the game [8][14]. Group 2: Key Findings - In the first study, when LLMs were informed they were playing against "themselves," those prompted with collective terms tended to betray more, while those prompted with selfish terms cooperated more [15][16]. - The second study simplified the rules by removing reminders and reasoning prompts, yet the behavioral differences between the "No Name" and "Name" conditions persisted, indicating that self-recognition impacts behavior beyond mere reminders [21][23]. - The third study involved LLMs truly competing against their own copies, revealing that under collective or neutral prompts, being told they were playing against themselves increased contributions, while under selfish prompts, contributions decreased [24][28]. Group 3: Implications - The findings suggest that LLMs possess a form of self-recognition that influences their decision-making in multi-agent environments, which could have significant implications for the design of future AI systems [29]. - The research highlights potential issues where AI might unconsciously discriminate against each other, affecting cooperation or betrayal tendencies in complex scenarios [29].