Workflow
李飞飞的答案:大模型之后,Agent 向何处去?
3 6 Ke·2025-09-04 08:28

Core Insights - The latest paper by Fei-Fei Li delineates the boundaries and establishes paradigms for the currently trending field of Agents, with major players like Google, OpenAI, and Microsoft aligning their strategies with the proposed capability stack [1][4] - The paper introduces a comprehensive cognitive loop architecture that encompasses perception, cognition, action, learning, and memory, forming a dynamic iterative system for intelligent agents, which is not only a technological integration but also a systematic vision for the future of AGI [1][5] - Large models are identified as the core engine driving Agents, while environmental interaction is crucial for addressing issues of hallucination and bias, emphasizing the need for real or simulated feedback to calibrate reality and incorporate ethical and safety mechanisms [1][3][11] Summary by Sections 1. Agent AI's Core: A New Cognitive Architecture - The paper presents a novel Agent AI paradigm that is a forward-thinking consideration of the development path for AGI, rather than a mere assembly of existing technologies [5] - It defines five core modules: Environment and Perception, Cognition, Action, Learning, and Memory, which together create a complete and interactive cognitive loop for intelligent agents [5][10] 2. How Large Models Drive Agent AI - The framework of Agent AI is made possible by the maturity of large foundational models, particularly LLMs and VLMs, which serve as the basis for the cognitive capabilities of Agents [11][12] - LLMs and VLMs have internalized vast amounts of common and specialized knowledge, enabling Agents to perform zero-shot planning effectively [12] - The paper highlights the challenge of "hallucination," where models may generate inaccurate content, and proposes environmental interaction as a key anchor to mitigate this issue [13] 3. Application Potential of Agent AI - The paper explores the significant application potential of Agent AI in three cutting-edge fields: gaming, robotics, and healthcare [14][19] - In gaming, Agent AI can transform NPC behavior, allowing for meaningful interactions and dynamic adjustments based on player actions, enhancing immersion [15] - In robotics, Agent AI enables users to issue commands in natural language, allowing robots to autonomously plan and execute complex tasks [17] - In healthcare, Agent AI can serve as a medical chatbot for preliminary consultations and provide diagnostic suggestions, particularly in resource-limited settings [19][21] 4. Conclusion - The paper acknowledges that Agent AI is still in its early stages and faces challenges in achieving deep integration across modalities and domains [22] - It emphasizes the need for standardized evaluation metrics to guide development and measure technological progress in the field [22]