Workflow
VLA:有人喊“最强解法”,有人说“跑不动”
3 6 Ke·2025-09-11 08:17

Core Viewpoint - The intelligent driving industry is at a critical juncture with the emergence of VLA (Vision-Language-Action) technology, leading to a division among key players regarding its potential and implementation [1][2][3]. Group 1: VLA Technology and Its Implications - VLA is seen as a potential solution to the limitations of end-to-end systems in intelligent driving, which can only address about 90% of the challenges [6][10]. - The introduction of language as a bridge in the VLA model aims to enhance the system's understanding and decision-making capabilities, allowing for more complex and nuanced driving actions [12][14][18]. - VLA is believed to improve three key areas: understanding dynamic traffic signals, enabling natural voice interactions, and enhancing risk prediction capabilities [19][20][21]. Group 2: Challenges and Criticisms of VLA - Despite the potential advantages, VLA faces significant challenges, including the need for substantial financial investment and the technical difficulties of aligning multimodal data [31][32]. - Critics argue that VLA may not be necessary for achieving higher levels of autonomous driving, with some suggesting it is more of a supplementary enhancement rather than a fundamental solution [35][36]. - The current limitations of existing intelligent driving chips hinder the effective deployment of VLA models, raising concerns about their practical application in real-world scenarios [31][32]. Group 3: Industry Perspectives and Strategies - Companies like Li Auto, Yuanrong, and Xiaopeng are betting on VLA, emphasizing high investment and computational intensity to pursue its development [41][42]. - In contrast, players like Huawei and Horizon are focusing on structural solutions and world models, arguing that these approaches may offer more reliable paths to achieving advanced autonomous driving [43][46]. - The ongoing debate over VLA reflects broader strategic choices within the industry, with companies prioritizing different technological pathways based on their resources and market positioning [47].