Workflow
DeepSeek,打破历史!中国AI的“Nature时刻”

Core Insights - The DeepSeek-R1 inference model research paper has made history by being the first Chinese large model research to be published on the cover of the prestigious journal Nature, marking a significant recognition of China's AI technology in the international scientific community [1][2] - Nature's editorial highlighted that DeepSeek has broken the gap of independent peer review for mainstream large models, which has been lacking in the industry [2] Group 1: Research and Development - The DeepSeek-R1 model's research paper underwent a rigorous peer review process involving eight external experts over six months, emphasizing the importance of transparency and reproducibility in AI model development [2] - The paper disclosed significant details about the training costs and methodologies, including a total training cost of $294,000 (approximately 2.09 million RMB) for R1, achieved using 512 H800 GPUs over 198 hours [3] Group 2: Model Performance and Criticism - DeepSeek addressed initial criticisms regarding the "distillation" method used in R1, clarifying that all training data was sourced from the internet without intentional use of outputs from proprietary models like OpenAI's [3] - The R1 model has been recognized for its cost-effectiveness compared to other inference models, which often incur training costs in the tens of millions [3] Group 3: Future Developments - There is significant anticipation regarding the release of the R2 model, with speculation that delays may be due to computational limitations [4] - The recent release of DeepSeek-V3.1 has introduced a mixed inference architecture and improved efficiency, indicating a step towards the "Agent" era in AI [4][5] - DeepSeek's emphasis on using UE8M0 FP8 Scale parameter precision in V3.1 suggests a strategic alignment with domestic AI chip development, potentially enhancing the performance of future models [5]