Core Viewpoint - The 2023 Nobel Prize in Physics was awarded to John Clarke, Michel H. Devoret, and John M. Martinis for their groundbreaking experiments demonstrating macroscopic quantum tunneling effects and energy quantization phenomena in electrical circuits, paving the way for advancements in quantum technologies such as quantum computing and quantum cryptography [1][2][3]. Group 1: Award Significance - The award recognizes the ability to observe quantum mechanical effects at a macroscopic scale, addressing a fundamental question in physics regarding the maximum size of a system that can exhibit quantum behavior [1][2]. - The experiments conducted by the laureates illustrate that quantum properties can manifest in systems large enough to be handled, such as superconducting circuits, which are practical applications of quantum technology [1][2][3]. Group 2: Experimental Insights - The laureates' work involved constructing a superconducting circuit that allowed for the observation of quantum tunneling, where charged particles behave collectively as a single entity, demonstrating quantum effects in a system containing billions of Cooper pairs [1][2][37]. - Their experiments showed that the system could escape a zero-voltage state through quantum tunneling, producing measurable voltage, thus confirming the quantum nature of the system [21][24][39]. Group 3: Future Implications - The findings from this research are expected to significantly impact the development of next-generation quantum technologies, including quantum computers and quantum sensors, by providing a deeper understanding of quantum mechanics at larger scales [1][2][42]. - The work lays a foundation for future advancements in quantum computing, as it allows for the use of quantized energy states in superconducting circuits as qubits, which are essential for building practical quantum computers [43][44].
今年的诺贝尔物理学奖,为超导量子计算机铺平道路
Hu Xiu·2025-10-07 12:22