Workflow
21专访|霍尼韦尔孙建能:可持续航空燃料需多路径破解成本困局

Core Insights - The intersection of the century's changes and the energy revolution is leading to a historic restructuring across various industries, with sustainable aviation fuel (SAF) being crucial for the sustainable development of the aviation industry [1][2] Industry Overview - China's SAF demand is projected to reach 3 million tons by 2030 and 86 million tons by 2050, indicating a persistent supply-demand gap [2][3] - The current average cost of SAF is approximately three times that of traditional aviation fuel, creating significant short-term investment return pressures for companies [1][11] Policy and Market Dynamics - The introduction of new national contribution targets provides a stable policy guarantee for the industry, encouraging companies to develop actionable energy transition strategies [1][3] - The policy framework is being constructed to create a closed loop driven by goals, technology, and market forces, particularly benefiting key areas like SAF, green hydrogen, and carbon capture [2][10] Challenges and Opportunities - The lack of mandatory SAF blending policies in China presents challenges, but strong market demand, corporate ESG strategies, and supportive policy signals are driving SAF adoption [3][11] - The potential of using waste cooking oil for SAF production is limited by raw material availability, with only about 5 million tons of recoverable kitchen oil in China, which is insufficient to meet the projected SAF demand [4][5] Technological Innovations - Honeywell is focusing on breakthrough innovations and local adaptations in technology development to address the challenges of industrialization in the SAF sector [8][9] - The company is developing various technological routes, including Ecofining and eFining processes, to optimize raw material utilization and reduce costs [9][11] Future Outlook - The energy transition in China is characterized by multi-technology parallelism and cross-industry collaboration, necessitating a balance between breaking traditional energy dependencies and establishing feasible pathways [10][11] - The integration of carbon capture, green hydrogen production, and SAF synthesis is seen as a promising closed-loop solution for sustainable fuel production [11]