Core Concept - The article discusses the emerging field of "context engineering," defined as the art and science of providing the right information to prepare for subsequent reasoning, as proposed by Shopify CEO Tobi Lütke and AI expert Andrej Karpathy [1][3]. Summary by Sections What is Context Engineering? - Context engineering addresses the cognitive gap between humans and machines, where human communication is high-entropy and often ambiguous, while machines require low-entropy, clear instructions [3][14]. - The essence of context engineering is to reduce entropy through richer and more effective context, enabling better machine understanding of human intent [3][4]. Evolution of Context Engineering - Context engineering has evolved from a focus on translation (1.0 era, 1990s-2020) to a focus on instruction (2.0 era, 2020-present), with the introduction of large language models allowing for more natural interactions [5][11]. - The transition from context engineering 1.0 to 2.0 reflects a shift in how users interact with machines, moving from structured programming languages to natural language prompts [12][13]. AI Communication Gaps - The article identifies four main deficiencies in AI that contribute to the communication gap: limited sensory perception, restricted understanding capabilities, lack of memory, and scattered attention [14][15]. - These deficiencies necessitate the development of context engineering to facilitate better communication and understanding between humans and AI [15][16]. Framework of Context Engineering - A comprehensive context engineering framework consists of three components: context collection, context management, and context usage [16][24]. - Context collection involves multi-modal and distributed methods to gather information beyond simple text inputs, addressing AI's sensory and memory limitations [18][20]. - Context management focuses on abstracting and structuring high-entropy information into low-entropy formats that AI can understand, enhancing its learning capabilities [23][24]. - Context usage aims to improve AI's attention mechanisms, ensuring relevant information is prioritized during interactions [25][26]. Future of Context Engineering - The article anticipates the evolution of context engineering into 3.0 and 4.0 stages, where AI will achieve human-level and eventually superhuman intelligence, leading to seamless communication without the need for explicit context [30][34]. - Ultimately, the goal of context engineering is to become an invisible infrastructure that enhances AI usability without being a focal point of discussion [35].
一篇论文,读懂上下文工程的前世今生
3 6 Ke·2025-11-07 07:11