Core Insights - The AIMS telescope, the world's first dedicated instrument for observing solar magnetic fields in the mid-infrared spectrum, has been officially launched, enhancing human observation capabilities of the sun [1][2][3] Group 1: Technological Advancements - AIMS telescope aims to improve magnetic field measurement precision to better than 10 Gauss, with a Fourier spectrometer achieving a spectral resolution 156 times higher than previous domestic levels [3][4] - The project has made significant technological breakthroughs since its inception in 2015, including the development of the largest mid-infrared wave plate made from cadmium selenide [3][4] Group 2: Collaborative Efforts - The development of the AIMS telescope involved a multi-disciplinary approach with collaboration among various research institutes, ensuring smooth integration of different components [4][5] - The project emphasized top-level design and clear communication of technical requirements among participating organizations, which minimized design rework [4] Group 3: Site Selection and Local Support - The telescope's location in Qinghai's Se Shiteng Mountain was chosen for its optimal conditions for solar observation, including long sunlight hours and dry climate [5] - Local government support was crucial for the project's infrastructure development, including the use of helicopters for transporting equipment to the high-altitude site [5] Group 4: Team Dynamics and Challenges - The project team, primarily composed of young researchers, faced significant challenges due to high-altitude conditions, yet demonstrated resilience and commitment to advancing the project [6] - The team successfully identified and resolved issues related to low-temperature effects on optical performance, showcasing their problem-solving capabilities [6] Group 5: Future Directions - AIMS telescope has already collected valuable mid-infrared data on solar flares, contributing to the understanding of energy transfer mechanisms during solar eruptions [6] - The project aims to maintain and operate the telescope effectively while focusing on cutting-edge scientific research in solar physics [6]
人类观测太阳又多了一双“慧眼” 从一台望远镜“看”源头创新(科技视点·加快高水平科技自立自强)
Ren Min Ri Bao·2025-11-16 22:04