Core Insights - DeepSeek has launched two new models, DeepSeek-V3.2 and DeepSeek-V3.2-Speciale, which are leading in reasoning capabilities globally [1][3]. Model Overview - DeepSeek-V3.2 aims to balance reasoning ability and output length, suitable for everyday use such as Q&A and general intelligence tasks. It has reached the level of GPT-5 in public reasoning tests, slightly below Google's Gemini3 Pro [3]. - DeepSeek-V3.2-Speciale is designed to push the reasoning capabilities of open-source models to the extreme, combining features from DeepSeek-Math-V2 for theorem proving, and excels in instruction following and logical verification [3][4]. Performance Metrics - Speciale has surpassed Google's Gemini3 Pro in several reasoning benchmark tests, including the American Mathematics Invitational, Harvard MIT Mathematics Competition, and International Mathematical Olympiad [4]. - In various benchmarks, DeepSeek's performance is competitive, with specific scores noted in a comparative table against GPT-5 and Gemini-3.0 [5]. Technical Limitations - Despite achievements, DeepSeek acknowledges limitations compared to proprietary models like Gemini3 Pro, particularly in knowledge breadth and token efficiency [6]. - The company plans to enhance pre-training computation and optimize reasoning chains to improve model efficiency and capabilities [6][7]. Mechanism Innovations - DeepSeek introduced a Sparse Attention Mechanism (DSA) to reduce computational complexity, which has proven effective in enhancing performance without sacrificing long-context capabilities [7][8]. - Both new models incorporate this mechanism, making DeepSeek-V3.2 a cost-effective alternative that narrows the performance gap with proprietary models [8]. Community Reception - The release has been positively received in the community, with users noting that DeepSeek's models are now comparable to GPT-5 and Gemini3 Pro, marking a significant achievement in open-source model development [8].
DeepSeek又上新!模型硬刚谷歌,承认开源与闭源差距拉大