下一个“AI卖铲人”:算力调度是推理盈利关键,向量数据库成刚需
Hua Er Jie Jian Wen·2025-12-24 04:17

Core Insights - The report highlights the emergence of AI infrastructure software (AI Infra) as a critical enabler for the deployment of generative AI applications, marking a golden development period for infrastructure software [1] - Unlike the model training phase dominated by tech giants, the inference and application deployment stages present new commercial opportunities for independent software vendors [1] - Key products in this space include computing scheduling software and data-related software, with computing scheduling capabilities directly impacting the profitability of model inference services [1][2] Computing Scheduling - AI Infra is designed to efficiently manage and optimize AI workloads, focusing on large-scale training and inference tasks [2] - Cost control is crucial in the context of a price war among domestic models, with Deepseek V3 pricing significantly lower than overseas counterparts [5] - Major companies like Huawei and Alibaba have developed advanced computing scheduling platforms that enhance resource utilization and reduce GPU requirements significantly [5][6] - For instance, Huawei's Flex:ai improves utilization by 30%, while Alibaba's Aegaeon reduces GPU usage by 82% through token-level dynamic scheduling [5][6] Profitability Analysis - The report indicates that optimizing computing scheduling can serve as a hidden lever for improving gross margins, with a potential increase from 52% to 80% in gross margin by enhancing single-card throughput [6] - The sensitivity analysis shows that a 10% improvement in throughput can lead to a gross margin increase of 2-7 percentage points [6] Vector Databases - The rise of RAG (Retrieval-Augmented Generation) technology has made vector databases a necessity for enterprises, with Gartner predicting a 68% adoption rate by 2025 [10] - Vector databases are essential for supporting high-speed retrieval of massive datasets, which is critical for RAG applications [10] - The demand for vector databases is expected to surge, driven by a tenfold increase in token consumption from API integrations with large models [11] Database Landscape - The data architecture is shifting from "analysis-first" to "real-time operations + analysis collaboration," emphasizing the need for low-latency processing [12][15] - MongoDB is positioned well in the market due to its low entry barriers and adaptability to unstructured data, with significant revenue growth projected [16] - Snowflake and Databricks are expanding their offerings to include full-stack tools, with both companies reporting substantial revenue growth and customer retention rates [17] Storage Architecture - The transition to real-time AI inference is reshaping storage architecture, with a focus on reducing IO latency [18] - NVIDIA's SCADA solution demonstrates significant improvements in IO scheduling efficiency, highlighting the importance of storage performance in AI applications [18][19]