刚刚,梁文锋署名,DeepSeek元旦新论文要开启架构新篇章

Core Insights - DeepSeek has introduced a new architecture called Manifold-Constrained Hyper-Connections (mHC) aimed at addressing the instability issues in traditional hyper-connections during large-scale model training while maintaining significant performance gains [1][27][28]. Group 1: Architecture and Methodology - The mHC architecture expands the traditional single residual flow of Transformers into a multi-flow parallel structure, utilizing the Sinkhorn-Knopp algorithm to constrain the connection matrix on a doubly stochastic matrix manifold [1][28]. - The core objective of mHC is to retain the performance improvements from widening the residual flow while resolving issues related to training instability and excessive memory consumption [4][34]. - The research team has implemented infrastructure optimizations such as kernel fusion, selective recomputation, and an extended DualPipe communication strategy to offset the overhead caused by wider channels [31][34]. Group 2: Performance and Stability - Empirical evidence shows that mHC not only resolves stability issues but also demonstrates exceptional scalability in large-scale training scenarios, such as with a 27 billion parameter model, where it only increased training time overhead by 6.7% while achieving significant performance improvements [34][49]. - The training stability of mHC was evaluated against a baseline model, showing a reduction in final loss by 0.021 and maintaining a stable gradient norm profile, indicating superior stability compared to traditional hyper-connections [49][50]. Group 3: Benchmarking and Results - In various downstream benchmark tests, mHC consistently outperformed the baseline model and surpassed traditional hyper-connections in most tasks, achieving performance gains of 2.1% and 2.3% in specific tasks [51][52]. - The scalability experiments indicated that mHC maintains its performance advantages even under higher computational budgets, demonstrating robust effectiveness in large-scale scenarios [52][53].