Workflow
Waymo's EMMA: Teaching Cars to Think - Jyh Jing Hwang, Waymo
AI Engineerยท2025-07-26 17:00

Autonomous Driving History and Challenges - Autonomous driving research started in the 1980s with simple neural networks and evolved to end-to-end driving models by 2020 [2] - Scaling autonomous driving presents challenges, requiring solutions for long-tail events and rare scenarios [5][7] - Foundation models, like Gemini, show promise in generalizing to rare driving events and providing appropriate responses [8][9][10][11] Emma: A Multimodal Large Language Model for Autonomous Driving - The company is exploring Emma, a driving system leveraging Gemini, which uses routing text and camera input to predict future waypoints [11][12][13][14] - Emma is self-supervised, camera-only, and high-dimension map-free, achieving state-of-the-art quality on the nuScenes benchmark [15][16][17] - Channel reasoning is incorporated into Emma, allowing the model to explain its driving decisions and improve performance on a 100k dataset [17] Evaluation and Validation - Evaluation is crucial for the success of autonomous driving models, including open loop evaluation, simulations, and real-world testing [25] - Generative models are being explored for sensor simulation to evaluate the planner under various conditions like rain and different times of day [26][27][28] Future Directions - The company aims to improve generalization and scale autonomous driving by leveraging foundation models [30] - Training on larger datasets improves the quality of the planner [19][20] - The company is exploring training on various tasks, such as 3D detection and rograph estimation, to create a more generalizable model [21][22][23][24]