Why you should care about AI interpretability - Mark Bissell, Goodfire AI
AI Engineer·2025-07-27 15:30
The goal of mechanistic interpretability is to reverse engineer neural networks. Having direct, programmable access to the internal neurons of models unlocks new ways for developers and users to interact with AI — from more precise steering to guardrails to novel user interfaces. While interpretability has long been an interesting research topic, it is now finding real-world use cases, making it an important tool for AI engineers. About Mark Bissell Mark Bissell is an applied researcher at Goodfire AI worki ...