Workflow
从论文中积累复现 R1 的 insight
理想TOP2·2025-04-30 13:04

Core Viewpoint - The article discusses advancements in reinforcement learning (RL) techniques for large language models (LLMs), emphasizing the need for improved algorithms, reward design, and training strategies to enhance reasoning capabilities and model performance. Group 1: Algorithm Improvements - Current algorithms have significant room for improvement, with the introduction of Dr. GRPO addressing issues in GRPO related to response length bias and problem difficulty bias, leading to better token efficiency and reasoning performance [3][4]. - The DAPO method is proposed to tackle entropy collapse and sample efficiency issues in GRPO and PPO, enhancing training stability and efficiency through techniques like Clip-Higher and dynamic sampling [6]. Group 2: Training Strategies - Larger training batch sizes (e.g., TBS = 1024) enhance training efficiency and stability, while on-policy strategies are more advantageous than off-policy ones for model exploration [6]. - Increasing rollout times (e.g., n = 64) improves training outcomes, encouraging longer responses, and a dynamic annealing strategy for KL penalty is recommended to balance exploration and stability [6]. Group 3: Reward Design - Early reward design flaws led to various reward hacking behaviors, necessitating a refined reward system that includes format and answer rewards to constrain model behavior and avoid cheating [6]. - The relationship between response length and reasoning ability is not causal; longer responses may provide more exploration space but do not directly enhance reasoning performance [6]. Group 4: Generalization and Learning - RL is more effective than supervised fine-tuning (SFT) in promoting generalization across tasks, suggesting that reasoning can be a universal capability stimulated by specific tasks [7][9]. - Combining rule-based rewards with reward model-based rewards is beneficial, especially in tasks without clear answers, to enhance learning and mitigate reward hacking [9].