搜索Agent最新高效推理框架:吞吐量翻3倍、延迟降至1/5,还不牺牲答案质量丨南开& UIUC研究
量子位·2025-05-29 01:08
大语言模型(LLM)驱动的搜索智能体,通过动态拆解问题、交错执行"思考"(推理)和"查 找"(检索)来解决复杂任务,展现了惊人能力。 SearchAgent-X团队 投稿 量子位 | 公众号 QbitAI AI越来越聪明,但如果它们反应慢,效率低,也难以满足我们的需求。 然而,这种深度交互的背后,也隐藏着显著的效率痛点。 处理复杂任务时,查得慢、查得不准,都会拖慢整个流程。 来自南开大学和伊利诺伊大学厄巴纳-香槟分校的研究人员深入剖析了这些效率瓶颈,并提出 了一套名为 SearchAgent-X 的高效推理框架。 实践表明,SearchAgent-X实现了 1.3至3.4倍 的吞吐量提升, 延迟降至原来的 1/1.7至 1/5 ,同时不牺牲最终的答案质量。 解析搜索智能体中的两大效率瓶颈因素 研究者发现,看似简单的检索环节,隐藏着两大关键的效率制约因素: 检索精度:并非"越高越好"的微妙平衡 直觉上,检索越准,LLM获取信息质量越高,效率也应该越高。但实际情况是 非单调关系 过低精度 LLM需更多轮检索和推理弥补,总时间增加。 过高精度 检索本身计算资源消耗巨大,拖慢整体速度。 研究表明,系统吞吐量随近似检索 ...