Workflow
昇腾+鲲鹏双核暴击!华为打通MoE训练任督二脉再加速20%,内存省70%
雷峰网·2025-06-04 09:31

Core Viewpoint - Huawei's advancements in MoE (Mixture of Experts) training systems demonstrate its leading capabilities in AI foundational technology and engineering implementation [1][2]. Group 1: MoE Training System Enhancements - Huawei has introduced new solutions for MoE training operators and memory optimization, achieving a 20% increase in system throughput and a 70% reduction in memory usage [2][7]. - The MoE framework is becoming a preferred path for tech giants aiming for more powerful AI systems [3]. - The unique architecture of MoE is key to overcoming computational bottlenecks in large-scale model training [4]. Group 2: Challenges in MoE Training - MoE model training faces significant challenges, particularly in single-node efficiency, due to low operator computation efficiency and memory constraints [10][11]. - The complexity of the expert routing mechanism leads to frequent operator dispatch interruptions, creating a Host-Bound bottleneck [12]. - The need for extensive model parameters results in high memory demands, often leading to out-of-memory (OOM) issues during training [13][15]. Group 3: Solutions and Innovations - Huawei has developed a comprehensive solution to address the challenges in MoE training, focusing on enhancing operator computation efficiency and memory utilization [17]. - The collaboration between Ascend and Kunpeng architectures has significantly improved training operator efficiency and memory usage [6][34]. - The implementation of three optimization strategies—"Slimming," "Balancing," and "Transporting"—has led to a 15% increase in overall training throughput for the Pangu Ultra MoE 718B model [20][21]. Group 4: Specific Operator Optimizations - FlashAttention optimization has improved performance by 50% for forward and 30% for backward processes through efficient computation order and reduced redundancy [23][25]. - Matrix multiplication operator enhancements have increased core utilization by 10% through optimized data transport strategies [26][28]. - Vector operator optimizations have resulted in performance improvements exceeding three times by minimizing data transport during reordering operations [30][32]. Group 5: Memory Optimization Techniques - The Selective R/S memory optimization technique has enabled a 70% reduction in activation memory during training by implementing fine-grained recomputation and adaptive memory management [46][49]. - The self-adaptive memory optimization mechanism focuses on maximizing the efficiency of memory usage relative to additional computation time [55][56]. Group 6: Industry Implications - Huawei's deep collaboration between Ascend and Kunpeng, along with its innovative operator acceleration and memory optimization techniques, provides an efficient and cost-effective solution for MoE training [58]. - These advancements not only eliminate barriers for large-scale MoE model training but also offer valuable reference paths for the industry [59].