阿里智能体多轮推理超越GPT-4o,开源模型也能做Deep Research
量子位·2025-06-06 04:01

Group 1 - The core viewpoint of the article is the introduction of WebDancer, an advanced autonomous information retrieval agent developed by Tongyi Lab, which addresses the growing demand for multi-step information retrieval capabilities in an era of information overload [1][2][3]. Group 2 - Background: The traditional search engines are insufficient for users' needs for deep, multi-step information retrieval across various fields such as medical research, technological innovation, and business decision-making [3]. - Challenges: Building autonomous agents faces significant challenges, particularly in obtaining high-quality training data necessary for complex multi-step reasoning [4]. Group 3 - Innovative Data Synthesis: WebDancer proposes two innovative data synthesis methods, ReAct framework and E2HQA, to address data scarcity [5][6]. - ReAct Framework: This framework involves a cycle of Thought-Action-Observation, enabling the agent to generate thoughts, take structured actions, and receive feedback iteratively [5]. Group 4 - Training Strategies: WebDancer employs a two-phase training strategy, including Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL), to enhance the agent's adaptability and decision-making capabilities in dynamic environments [12][13]. - Data Quality Assurance: A multi-stage data filtering strategy is implemented to ensure high-quality training data, enhancing the agent's learning efficiency [9][10]. Group 5 - Experimental Results: WebDancer has demonstrated outstanding performance in various information retrieval benchmark tests, particularly excelling in the GAIA and WebWalkerQA datasets [17][18][19]. - Performance Metrics: The best-performing models achieved a Pass@3 score of 61.1% on the GAIA benchmark and 54.6% on the WebWalkerQA benchmark, showcasing their robust capabilities [20]. Group 6 - Future Prospects: WebDancer aims to integrate more complex tools and expand its capabilities to handle open-domain long-text writing tasks, enhancing the agent's reasoning and generative abilities [29][30]. - Emphasis on Agentic Models: The focus is on developing foundational models that inherently support reasoning, decision-making, and multi-step tool invocation, reflecting a philosophy of simplicity and universality in engineering [30][31].