Core Viewpoint - The article argues that true Artificial General Intelligence (AGI) requires a physical understanding of the world, as many problems cannot be reduced to symbolic operations [2][4][21]. Group 1: Limitations of Current AI Models - Current large language models (LLMs) may give the illusion of understanding the world, but they primarily learn heuristic collections for predicting tokens rather than developing a genuine world model [4][5][7]. - The understanding of LLMs is superficial, leading to misconceptions about their intelligence levels, as they do not engage in physical simulations when processing language [8][12][20]. Group 2: The Need for Embodied Cognition - The pursuit of AGI should prioritize embodied intelligence and interaction with the environment rather than merely combining multiple modalities into a patchwork solution [1][15][23]. - A unified approach to processing different modalities, inspired by human cognition, is essential for developing AGI that can generalize across various tasks [19][23]. Group 3: Critique of Multimodal Approaches - Current multimodal models often artificially sever the connections between modalities, complicating the integration of concepts and hindering the development of a coherent understanding [17][18]. - The reliance on large-scale models to stitch together narrow-domain capabilities is unlikely to yield a fully cognitive AGI, as it does not address the fundamental nature of intelligence [21][22]. Group 4: Future Directions for AGI Development - The article suggests that future AGI development should focus on interactive and embodied processes, leveraging insights from human cognition and classical disciplines [23][24]. - The challenge lies in identifying the necessary functions for AGI and arranging them into a coherent whole, which is more of a conceptual issue than a mathematical one [23].
“多模态方法无法实现AGI”
AI前线·2025-06-14 04:06