大模型“拼好题”,45K数据撬动18%提升,数学问题拒绝死记硬背 | MathFusion
量子位·2025-06-17 07:41
MathFusion通过三种"融合策略",将不同的数学问题巧妙地结合起来,生成封装了二者关系和结构的新问题。 △ 越靠左上角,模型表现越好且数据效率越高。 核心思想:三种"融合策略" MathFusion团队 投稿 量子位 | 公众号 QbitAI 当前数学领域的数据生成方法常常局限于对单个问题进行改写或变换,好比是让学生反复做同一道题的变种,却忽略了数学题目之间内在的关 联性。 为了打破这种局限,让大模型学会"串联"与"并联"知识,上海AI Lab、人大高瓴等团队联合提出了 MathFusion ,通过指令融合增强大语言 模型解决数学问题的能力。 仅使用45K的合成指令,MathFusion在多个基准测试中平均准确率提升了18.0个百分点,展现了卓越的数据效率和性能。 顺序融合(Sequential Fusion) 将两个问题串联起来,前一个问题的答案作为后一个问题的某个输入条件。这就像解决一个多步骤问题,模型需要先解出第一步,才能进 行第二步,从而学会处理问题间的依赖关系。 并列融合(Parallel Fusion) 将两个相似的问题融合在一起,对它们的数学概念进行识别和融合,在原来问题的基础上提出一道新 ...