保姆级具身智能实战:从零基础到强化学习与Sim2Real
具身智能之心·2025-06-27 08:36
当我们谈论机器⼈学习时,⼀个核⼼问题是:如何让机器⼈在不损坏昂贵硬件的情况下,快速掌握复杂的运动 技能?传统的⽅法是在真实机器⼈上进⾏⼤量试错,但这种⽅式不仅成本⾼昂,⽽且效率低下,甚⾄可能存在 安全⻛险。MuJoCo的出现彻底改变了这⼀现状。 在近20年AI发展的路线上,我们正站在⼀个前所未有的转折点。从早期的符号推理到深度学习的突破,再到 如今⼤语⾔模型的惊艳表现, AI 技术的每⼀次⻜跃都在重新定义着⼈类与机器的关系。⽽如今,具身智能正 在全面崛起。 想象⼀下这样的场景:⼀个机器⼈不仅能够理解你的语⾔指令,还能在复杂的现实环境中灵活移动,精确操作 各种物体,甚⾄在⾯对突发情况时做出智能决策。这不再是科幻电影中的幻想,⽽是正在快速成为现实的技术 ⾰命。从Tesla的Optimus⼈形机器⼈到Boston Dynamics的Atlas,从OpenAI的机械⼿到Google的RT-X项⽬,全 球顶尖的科技公司都在竞相布局这⼀颠覆性领域。具身智能的核⼼理念在于让AI系统不仅拥有"⼤脑",更要拥 有能够感知和改变物理世界的"身体"。这种AI不再局限于虚拟的数字空间,⽽是能够真正理解物理定律、掌握 运动技能、适应复 ...