Core Viewpoint - The article discusses the post-training strategies of Vision-Language-Action (VLA) models from the perspective of human motor skill learning, emphasizing the need for robots to undergo a post-training phase to adapt to specific tasks and environments, similar to how humans learn skills through practice and experience [4][5][9]. Summary by Sections 1. Introduction to VLA Models - VLA models integrate visual perception, language understanding, and action generation, enabling robots to interact with their environment effectively. However, their out-of-the-box performance is often insufficient for complex real-world applications, necessitating a post-training phase to refine their capabilities [8][9]. 2. Post-Training Strategies - The article categorizes VLA model post-training strategies into three dimensions: environment perception, embodiment (body awareness), and task understanding. This classification mirrors the key components of human motor learning, facilitating targeted improvements in specific model capabilities [10][12]. 3. Environmental Perception Enhancement - Strategies include enhancing the model's ability to perceive and adapt to various operational environments, utilizing cues from the surroundings to inform actions, and optimizing visual encoding for task-specific scenarios [12][13]. 4. Body Awareness and Control - The post-training strategies focus on developing internal models that predict body state changes, improving the model's ability to control robotic movements through feedback mechanisms inspired by human motor control [14]. 5. Task Understanding and Planning - The article highlights the importance of breaking down complex tasks into manageable steps, akin to human learning processes, to enhance the model's understanding of task objectives and improve operational planning [14]. 6. Multi-Component Integration - Effective skill acquisition in humans involves synchronizing multiple learning components. Similarly, VLA models benefit from integrating various strategies to optimize performance across different dimensions [14]. 7. Challenges and Future Trends - Despite advancements, challenges remain in enabling robots to learn and adapt like humans. Key areas for future research include improving kinematic models, optimizing action output structures, and enhancing human-robot interaction through expert knowledge integration [16][17][18]. 8. Continuous Learning and Generalization - The need for continuous learning capabilities is emphasized, as current VLA models often struggle with retaining previously learned skills. Future research should focus on developing algorithms that allow for lifelong learning and better generalization in open environments [22]. 9. Safety and Explainability - The article underscores the importance of safety and explainability in robotic decision-making, advocating for research into interpretable AI and safety mechanisms to ensure reliable operation in diverse scenarios [22].
中科院自动化所最新综述!VLA模型后训练与类人运动学习的共性
具身智能之心·2025-06-29 09:51