Workflow
工业富碳气体生物制造的 4 大工业挑战

Core Viewpoint - The article emphasizes the growing interest in the development of new carbon sources and biotechnological conversion, particularly in the context of industrial carbon-rich gas fermentation for fuel ethanol production. Group 1: Industrial Carbon-Rich Gas Fermentation Technology - The anaerobic microorganisms utilize the Wood-Ljungdahl pathway to absorb and fix CO and CO2 from industrial carbon-rich gases, synthesizing products like acetic acid and ethanol. The main advantages of this technology include low energy consumption, high safety, strong substrate specificity of enzymes, and high adaptability to raw material gas composition [3][4]. - The overall efficient conversion process is identified as a core challenge for scaling up industrial applications, closely related to stable gas supply, efficient strain development, fermentation process optimization, and market prospects [3][4]. Group 2: Progress of Industrial Carbon-Rich Gas Biomanufacturing Enterprises - Companies like LanzaTech and Jupeng Bio have established multiple industrial fermentation facilities. LanzaTech, a leader in gas fermentation, has formed a joint venture with Shougang Group, operating four production bases in China with an annual capacity of 210,000 tons of fuel ethanol and 23,200 tons of microbial protein by 2025 [4][6]. - Jupeng Bio is noted for its unique full-chain technology from biomass gasification to gas fermentation, with a demonstration plant completed in 2021 and a large-scale commercial facility under construction in Inner Mongolia [6][8]. - Other companies such as Synata Bio and Jitai Laibo Bio are rapidly developing in this field, with Synata Bio's 10-ton gas fermentation facility already completed [7][8]. Group 3: Challenges in Industrialization - The technology faces four main challenges: 1. Gas Source Stability: Variability in gas composition and quantity from upstream industries can affect the growth and metabolism of acetic acid-producing bacteria, potentially leading to fermentation system failure [9]. 2. Process Control Precision: There is a need for precise control technologies for gas inflow and product composition, as current methods for monitoring CO levels are inadequate [10][11]. 3. Reactor Design: Existing reactors often have low capacity and high production costs, necessitating the development of larger reactors while considering efficiency and operational costs [16][17]. 4. Separation and Purification: The low concentration of ethanol in fermentation necessitates the development of new separation technologies to reduce energy consumption during purification [20][22]. Group 4: Upcoming Industry Events - The Fourth Synthetic Biology and Green Bio-Manufacturing Conference will be held from August 20-22, 2025, in Ningbo, Zhejiang, focusing on new carbon source exploration and bioconversion opportunities [23][28].