Workflow
机器人导航的2个模块:视觉语言导航和目标导航有什么区别?
具身智能之心·2025-07-02 10:18

Core Viewpoint - The article discusses the evolution of robot navigation technology from traditional mapping and localization to large model-based navigation, which includes visual language navigation (VLN) and goal navigation. VLN focuses on following instructions, while goal navigation emphasizes understanding the environment to find paths independently [1][4]. Summary by Sections Visual Language Navigation (VLN) - VLN is fundamentally a task of following instructions, which involves understanding language commands, perceiving the environment, and planning movement strategies. The VLN robot system consists of three main modules: visual language encoder, environmental history representation, and action strategy [2]. - The robot processes language commands and visual observations, requiring effective information compression through a visual language encoder. Key issues include the choice of encoder and whether to project visual and language representations into a common space [2]. - The learning of the strategy network has shifted from extracting patterns from labeled datasets to distilling effective planning information from large language models (LLMs) [3]. Goal Navigation - Goal navigation extends VLN by enabling agents to explore unfamiliar 3D environments and plan paths based solely on target descriptions, such as coordinates or images [4]. - Unlike traditional VLN, goal-driven navigation requires a transition from "understanding instructions to finding paths" autonomously, involving semantic parsing, environmental modeling, and dynamic decision-making [6]. Commercial Application and Demand - Goal-driven navigation technology has been implemented in various verticals, such as terminal delivery, where it combines with social navigation algorithms to handle dynamic environments. Examples include Meituan's delivery robots and Starship Technologies' campus delivery robots [8]. - In sectors like healthcare, hospitality, and food service, companies like 嘉楠科技, 云迹科技, and Aethon have deployed service robots for autonomous delivery, enhancing service efficiency [8]. - The development of humanoid robots has led to an increased focus on adapting navigation technology, with companies like Unitree and Tesla showcasing advanced capabilities [9]. - The growth in this sector has created significant job demand, particularly in navigation roles, which are recognized as one of the first technology subfields to achieve practical application [9]. Knowledge and Learning Challenges - Both VLN and goal navigation encompass a wide range of knowledge areas, including natural language processing, computer vision, reinforcement learning, and graph neural networks. This complexity presents challenges for learners seeking to enhance their interdisciplinary skills [10].