Workflow
诺安基金孔宪政:以哲学思维理解金融市场,以科学手段获取超额收益
点拾投资·2025-07-02 23:16

Core Viewpoint - The article emphasizes the importance of scientific thinking and critical analysis in quantitative investment, highlighting the influence of philosopher Karl Popper on investment strategies and the development of models that seek to identify and exploit market inefficiencies. Group 1: Investment Philosophy - The essence of quantitative investment lies in modeling the securities market using scientific methods to identify reproducible patterns that can influence market behavior [16][6] - The investment approach is heavily influenced by Popper's philosophy of "conjecture and refutation," which encourages the search for rules in an uncertain world [7][56] - The focus on objective analysis helps avoid the pitfalls of linear thinking and cognitive biases that can obscure judgment [2][61] Group 2: Performance Metrics - The performance of the multi-strategy fund, specifically the Nuon Multi-Strategy Mixed Fund, achieved a return of 100.74% over the past year, while the Nuon CSI 300 Index Enhanced Fund outperformed the CSI 300 Index by 2.06% with a return of 15.42% [3][29] - The significant outperformance of the Nuon Multi-Strategy Fund compared to small-cap indices like the CSI 2000 indicates that the excess returns are not merely a result of small-cap exposure but rather from sophisticated modeling techniques [3][34] Group 3: Investment Strategies - The concept of "attention value" in the A-share market suggests that investors frequently shift their focus due to the inability of many companies to meet return expectations, which can be strategically exploited for excess returns in micro-cap stocks [26][4] - The investment strategy emphasizes the importance of understanding the underlying statistical patterns and market behaviors rather than relying solely on historical performance [20][22] Group 4: Machine Learning and Model Development - The transition from multi-factor strategies to machine learning models allows for the capture of non-linear patterns, leading to superior returns that exceed human cognitive limitations [3][30] - The use of machine learning in investment models is seen as a way to enhance predictive capabilities and adapt to rapidly changing market conditions [30][40] Group 5: Market Dynamics and Future Outlook - The article argues that the excess returns from micro-cap stocks in the Chinese market are unlikely to converge due to the unique market dynamics and investor behavior [34][35] - The focus on scientific and systematic approaches in investment is expected to reveal opportunities that are not crowded, as many competitors rely on outdated inductive reasoning [45][46]