Workflow
DeepSeek 复盘:128 天后,为什么用户流量一直在下跌?
Founder Park·2025-07-12 20:19

Core Insights - The article reveals a fundamental challenge faced by the AI industry: the scarcity of computational resources [1] - It analyzes the contrasting strategies of DeepSeek and Anthropic in navigating this challenge [4][42] - The report emphasizes the importance of balancing technological breakthroughs and commercial success within limited computational resources [58] Group 1: AI Service Pricing Dynamics - AI service pricing is fundamentally a trade-off among three performance metrics: latency, throughput, and context window [2][3] - Adjusting these three parameters allows service providers to achieve any price level, making simple price comparisons less meaningful [30] - DeepSeek's extreme configuration sacrifices user experience for low pricing and maximized R&D resources [4][39] Group 2: DeepSeek's Market Performance - After the initial launch, DeepSeek experienced a significant drop in its own platform's user base, with a 29% decrease in monthly active users [15][12] - In contrast, the usage of DeepSeek models on third-party platforms surged nearly 20 times, indicating a shift in user preference [16][20] - The low pricing strategy of DeepSeek, at $0.55 per million tokens for input and $2.19 for output, initially attracted users but could not sustain long-term engagement [6][7] Group 3: Token Economics - Tokens are the fundamental units in AI, and their pricing is influenced by the service provider's ability to manage latency, throughput, and context window [21][22] - DeepSeek's official service has become less competitive in terms of latency compared to other providers, leading to a decline in its market share [33] - The context window offered by DeepSeek is the smallest among major providers, limiting its effectiveness in applications requiring extensive memory [34] Group 4: Anthropic's Resource Constraints - Anthropic faces similar computational resource challenges, particularly after the success of its programming tools, which increased demand for resources [44][45] - The API output speed of Anthropic's Claude has decreased by 30%, reflecting the strain on its computational resources [45] - Anthropic is actively seeking additional computational resources through partnerships with Amazon and Google [46][48] Group 5: Industry Trends and Future Outlook - The rise of inference cloud services and AI-driven applications is reshaping the competitive landscape, with a shift towards direct token sales rather than subscription models [51] - The article suggests that as affordable computational resources become more available, the long-tail market for AI services will continue to grow [52] - The ongoing price war among AI service providers is merely a surface-level issue; the deeper challenge lies in achieving technological advancements within resource constraints [58]