Workflow
模拟大脑功能分化!Fast-in-Slow VLA,让“快行动”和“慢推理”统一协作
具身智能之心·2025-07-13 09:48

Core Viewpoint - The article discusses the introduction of the Fast-in-Slow (FiS-VLA) model, a novel dual-system visual-language-action model that integrates high-frequency response and complex reasoning in robotic control, showcasing significant advancements in control frequency and task success rates [5][29]. Group 1: Model Overview - FiS-VLA combines a fast execution module with a pre-trained visual-language model (VLM), achieving a control frequency of up to 117.7Hz, which is significantly higher than existing mainstream solutions [5][25]. - The model employs a dual-system architecture inspired by Kahneman's dual-system theory, where System 1 focuses on rapid, intuitive decision-making, while System 2 handles slower, deeper reasoning [9][14]. Group 2: Architecture and Design - The architecture of FiS-VLA includes a visual encoder, a lightweight 3D tokenizer, and a large language model (LLaMA2-7B), with the last few layers of the transformer repurposed for the execution module [13]. - The model utilizes heterogeneous input modalities, with System 2 processing 2D images and language instructions, while System 1 requires real-time sensory inputs, including 2D images and 3D point cloud data [15]. Group 3: Performance and Testing - In simulation tests, FiS-VLA achieved an average success rate of 69% across various tasks, outperforming other models like CogACT and π0 [18]. - Real-world testing on robotic platforms showed success rates of 68% and 74% for different tasks, demonstrating superior performance in high-precision control scenarios [20]. - The model exhibited robust generalization capabilities, with a smaller accuracy decline when faced with unseen objects and varying environmental conditions compared to baseline models [23]. Group 4: Training and Optimization - FiS-VLA employs a dual-system collaborative training strategy, enhancing System 1's action generation through diffusion modeling while retaining System 2's reasoning capabilities [16]. - Ablation studies indicated that the optimal performance of System 1 occurs when sharing two transformer layers, and the best operational frequency ratio between the two systems is 1:4 [25]. Group 5: Future Prospects - The authors suggest that future enhancements could include dynamic adjustments to the shared structure and collaborative frequency strategies, which would further improve the model's adaptability and robustness in practical applications [29].