Core Viewpoint - The article discusses the limitations of the traditional von Neumann architecture in processing power, especially in the context of artificial intelligence and large models, and highlights the potential of in-memory computing technology as a solution to achieve high computing power, high bandwidth, and low power consumption simultaneously [1][5]. Group 1: In-Memory Computing Technology - In-memory computing technology is not new, but its commercial application has only recently begun to gain traction [5]. - The challenges in adopting this technology include the gap between theoretical research and practical implementation, as well as the need for software that provides a user experience similar to traditional chips [6][5]. - The company has focused on in-memory computing due to its research background in high energy efficiency computing and the need to compete with major players like NVIDIA [6][5]. Group 2: Development and Research Focus - The arrival of large AI models has prompted the company to deepen its exploration of the integration of in-memory computing technology with AI applications [7]. - The company has committed significant resources to research architecture, design, and quantization, aiming to create a synergy between in-memory computing and large models [7]. Group 3: New Product Launch - M50 Chip - The M50 chip is described as the most energy-efficient edge AI chip currently available, built on the second-generation SRAM-CIM dual-port architecture [8][10]. - It achieves 160 TOPS at INT8 and 100 TFLOPS at bFP16 with a typical power consumption of only 10W, making it suitable for various smart mobile terminals [10]. - Compared to traditional architectures, the M50 chip offers a 5 to 10 times improvement in energy efficiency [10]. Group 4: Compiler and Software Tools - The new compiler toolchain, "后摩大道," is designed to optimize the performance of the M50 chip, featuring flexible operator support and automated optimization capabilities [11][12]. - This tool aims to lower the entry barrier for developers and enhance the usability of the in-memory computing technology [11]. Group 5: Product Matrix and Applications - The company has introduced a diverse product matrix, including the "力擎" series and various M.2 cards, to support edge applications [13][14]. - These products are designed for a wide range of applications, including consumer electronics, smart offices, and industrial automation, enabling local processing without data transmission risks [16]. Group 6: Future Goals and Innovations - The company aims to become a leader in edge AI chip technology and is developing next-generation DRAM-PIM technology to further enhance computing and storage efficiency [18]. - The goal is to achieve over 1 TB/s on-chip bandwidth and triple the energy efficiency of current technologies, facilitating the deployment of large AI models in everyday devices [18].
死磕存算一体,后摩智能发布重磅新品
半导体芯闻·2025-07-29 10:29