Workflow
智元机器人首席科学家罗剑岚老师专访!具身智能的数采、仿真、场景与工程化
具身智能之心·2025-07-30 00:02

Core Viewpoint - The interview with Dr. Luo Jianlan emphasizes the importance of real-world data in the development of embodied intelligence, highlighting the challenges and strategies in data collection, model training, and application deployment. Data Discussion - The company collaborates with multiple sensor suppliers focusing on the joint development of visual, tactile, and high-density sensors, while building a cross-platform data collection API for standardized data input [2] - Achieving a high performance rate of 95% for robots in real-world applications remains a significant challenge, particularly in household tasks [2] - The company uses 100% real machine data for training multimodal large models, agreeing with the notion that simulation environments have scalability limitations [2][3] - The cost of collecting real-world data is not the main issue; rather, the lack of standardized mechanisms for data collection is a core challenge [6] - The company acknowledges the data scarcity and performance optimization difficulties in both autonomous driving and robotics, emphasizing the need for high success rates in open environments [7] Evaluation of Embodied Large Models - There is currently no universal benchmark for evaluating embodied intelligence models due to significant differences in software and hardware environments across companies [9] - The evaluation of different large models is primarily based on their technical routes and the challenges they face in the current landscape [9][10] - The company aims to establish a unified real-machine testing platform to facilitate model evaluation across different scenarios [9] Embodied Intelligence Applications and Implementation - The deployment process for robots involves four steps: task modeling, scene migration, scene adaptation, and safety verification, emphasizing the importance of hardware-software collaboration [18] - High success rates are crucial, but challenges in generalization, robustness, and real-time performance must also be addressed [20] - Industrial environments are seen as the most promising for the initial large-scale deployment of embodied intelligence due to their structured nature and clear commercial demands [21] Future Outlook for Embodied Intelligence - The company aims for a "DeepSeek moment," focusing on achieving near 100% success rates and high-speed execution capabilities in future models [24] - The transition to a data-driven paradigm is recognized as a significant shift in the field, moving away from traditional hypothesis-driven approaches [25] - The potential of brain-like architectures is acknowledged, with ongoing exploration to combine computation with physical capabilities for future intelligent systems [26]