Workflow
扩散世界模型LaDi-WM大幅提升机器人操作的成功率和跨场景泛化能力
具身智能之心·2025-08-18 00:07

Core Viewpoint - The article discusses the development of LaDi-WM (Latent Diffusion-based World Models), a novel world model that enhances robotic operation performance through predictive strategies, addressing the challenge of accurately predicting future states in robot-object interactions [1][5][28]. Group 1: LaDi-WM Overview - LaDi-WM utilizes pre-trained vision foundation models to create latent space representations that encompass both geometric and semantic features, facilitating strategy learning and cross-task generalization in robotic operations [1][5][10]. - The framework consists of two main phases: world model learning and policy learning, which iteratively optimizes action outputs based on predicted future states [9][12]. Group 2: Methodology - The world model learning phase involves extracting geometric representations using DINOv2 and semantic representations using Siglip, followed by an interactive diffusion process to enhance dynamic prediction accuracy [10][12]. - The policy model training incorporates future predictions from the world model as additional inputs, guiding the model to improve action predictions and reduce output distribution entropy over iterations [12][22]. Group 3: Experimental Results - In virtual experiments on the LIBERO-LONG dataset, LaDi-WM achieved a success rate of 68.7% with only 10 training trajectories, outperforming previous methods by a significant margin [15][16]. - The framework demonstrated strong performance in the CALVIN D-D dataset, completing tasks with an average length of 3.63, indicating robust capabilities in long-duration tasks [17][21]. - Real-world experiments showed a 20% increase in success rates for tasks such as stacking bowls and drawer operations, validating the effectiveness of LaDi-WM in practical scenarios [25][26]. Group 4: Scalability and Generalization - The scalability experiments indicated that increasing the training data for the world model led to reduced prediction errors and improved policy performance [18][22]. - The generalization capability of the world model was highlighted by its ability to guide policy learning across different environments, achieving better performance than models trained solely in the target environment [20][21].