Workflow
Nature:蛋白质设计新革命!AI一次性设计出高效结合蛋白,免费开源、人人可用
生物世界·2025-08-29 04:29

Core Viewpoint - The article discusses the breakthrough technology BindCraft, which allows for the one-shot design of functional protein binders with a success rate of 10%-100%, significantly improving the efficiency of protein design compared to traditional methods [2][3][5]. Summary by Sections BindCraft Technology - BindCraft is an open-source, automated platform for de novo design of protein binders, achieving high-affinity binders without the need for high-throughput screening or experimental optimization [3][5]. - The technology leverages AlphaFold2's weights to generate protein binders with nanomolar affinity, even in the absence of known binding sites [3][5]. Applications and Results - The research team successfully designed binders targeting challenging targets such as cell surface receptors, common allergens, de novo proteins, and multi-domain nucleases like CRISPR-Cas9 [3][7]. - Specific applications include: 1. Designing antibody drugs targeting therapeutic cell surface receptors like PD-1 and PD-L1, achieving nanomolar affinity without extensive design and screening [7]. 2. Blocking allergens, with a designed binder for birch pollen allergen Bet v1 showing a 50% reduction in IgE binding in patient serum tests [7][8]. 3. Regulating CRISPR gene editing by designing a new inhibitory protein that significantly reduces Cas9's gene editing activity in HEK293 cells [8]. 4. Neutralizing deadly bacterial toxins, with a designed protein completely eliminating cell death caused by the toxin from Clostridium perfringens [8]. 5. Modifying AAV for targeted gene delivery by integrating mini-binders that specifically target HER2 and PD-L1 expressing cancer cells [8]. Impact and Future Potential - BindCraft addresses long-standing success rate bottlenecks in protein design and offers direct solutions for allergy treatment, gene editing safety, toxin neutralization, and targeted gene therapy [9]. - The open-source nature of the technology allows ordinary laboratories to design custom proteins, potentially reshaping drug development, disease diagnosis, and biotechnology [9].