Core Viewpoint - The article discusses the advancements in multimodal fusion and vision-language models (VLMs) in robot vision, emphasizing their role in enhancing robots' perception and understanding capabilities in complex environments [4][5][56]. Multimodal Fusion in Robot Vision Tasks - Semantic scene understanding is a critical task in visual systems, where multimodal fusion significantly improves accuracy and robustness by integrating additional information such as depth and language [9][11]. - Current mainstream fusion strategies include early fusion, mid-level fusion, and late fusion, evolving from simple concatenation to more sophisticated interactions within a unified architecture [10][12][16]. Applications of Multimodal Fusion - In autonomous driving, 3D object detection is crucial for accurately identifying and locating pedestrians, vehicles, and obstacles, with multimodal fusion enhancing environmental understanding [15][18]. - The design of multimodal fusion involves addressing when to fuse, what to fuse, and how to fuse, with various strategies impacting performance and computational efficiency [16][17]. Embodied Navigation - Embodied navigation allows robots to explore and act in real environments, focusing on autonomous decision-making and dynamic adaptation [23][25][26]. - Three representative methods include goal-directed navigation, instruction-following navigation, and dialogue-based navigation, showcasing the evolution from perception-driven to interactive understanding [25][26][27]. Visual Localization and SLAM - Visual localization determines a robot's position, which is challenging in dynamic environments; recent methods leverage multimodal fusion to improve performance [28][30]. - SLAM (Simultaneous Localization and Mapping) has evolved from geometric-driven to semantic-driven approaches, integrating various sensor data for enhanced adaptability [30][34]. Vision-Language Models (VLMs) - VLMs have progressed significantly, focusing on semantic understanding, 3D object detection, embodied navigation, and robot operation, with various fusion methods being explored [56][57]. - Key innovations in VLMs include large-scale pre-training, instruction fine-tuning, and structural optimization, enhancing their capabilities in cross-modal reasoning and task execution [52][53][54]. Future Directions - Future research should focus on structured spatial modeling, improving system interpretability and ethical adaptability, and developing cognitive VLM architectures for long-term learning [57][58].
最新综述!多模态融合与VLM在具身机器人领域中的方法盘点
具身智能之心·2025-08-31 02:33