Workflow
最新综述!多模态融合与VLM在具身机器人领域中的方法盘点
具身智能之心·2025-09-01 04:02

Core Insights - The article discusses the transformative impact of Multimodal Fusion and Vision-Language Models (VLMs) on robot vision, enabling robots to evolve from simple mechanical executors to intelligent partners capable of understanding and interacting with complex environments [3][4][5]. Multimodal Fusion in Robot Vision - Multimodal fusion integrates various data types such as RGB images, depth information, LiDAR point clouds, language, and tactile data, significantly enhancing robots' perception and understanding of their surroundings [3][4][9]. - The main fusion strategies have evolved from early explicit concatenation to implicit collaboration within unified architectures, improving feature extraction and task prediction [10][11]. Applications of Multimodal Fusion - Semantic scene understanding is crucial for robots to recognize objects and their relationships, where multimodal fusion greatly improves accuracy and robustness in complex environments [9][10]. - 3D object detection is vital for autonomous systems, combining data from cameras, LiDAR, and radar to enhance environmental understanding [16][19]. - Embodied navigation allows robots to explore and act in real environments, focusing on goal-oriented, instruction-following, and dialogue-based navigation methods [24][26][27][28]. Vision-Language Models (VLMs) - VLMs have advanced significantly, enabling robots to understand spatial layouts, object properties, and semantic information while executing tasks [46][47]. - The evolution of VLMs has shifted from basic models to more sophisticated systems capable of multimodal understanding and interaction, enhancing their applicability in various tasks [53][54]. Future Directions - The article identifies key challenges in deploying VLMs on robotic platforms, including sensor heterogeneity, semantic discrepancies, and the need for real-time performance optimization [58]. - Future research may focus on structured spatial modeling, improving system interpretability, and developing cognitive VLM architectures for long-term learning capabilities [58][59].