Core Viewpoint - The interposer has transitioned from a supporting role to a focal point in the semiconductor industry, with major companies like Resonac and NVIDIA leading initiatives to develop advanced interposer technologies [1][28]. Group 1: Definition and Importance of Interposer - Interposer serves as a critical layer between chips and packaging substrates, enabling high-density interconnections and efficient integration of various chiplets into a system-in-package (SiP) [3][5]. - The interposer is essential for achieving higher bandwidth, lower latency, and increased computational density in advanced packaging [3][5]. Group 2: Types of Interposers - Two main types of interposers are currently in production: Silicon Interposer (inorganic) and Organic Interposer (Redistribution Layer) [5][6]. - Silicon Interposer has been established since the late 2000s, with TSMC pioneering its use in high-performance computing [6]. - Organic Interposer is gaining traction due to its lower production costs and flexibility, despite challenges in wiring precision and reliability [6][23]. Group 3: JOINT3 Alliance - The JOINT3 alliance, led by Resonac, consists of 27 global companies aiming to develop next-generation semiconductor packaging, focusing on panel-level organic interposers [8][11]. - The alliance plans to establish a dedicated center in Japan for advanced organic interposer development, targeting a significant increase in production efficiency and cost reduction [11][12]. - The shift to organic interposers is driven by the limitations of silicon interposers, particularly in terms of geometric losses and production costs [11][12]. Group 4: SiC Interposer as a New Direction - NVIDIA is exploring the use of Silicon Carbide (SiC) interposers for its next-generation GPUs, indicating a potential shift in materials used for interposers [17][19]. - SiC offers superior thermal conductivity and electrical insulation, making it suitable for high-performance AI and HPC applications, although manufacturing challenges remain [19][25]. Group 5: Competitive Landscape of Interposer Materials - The competition among silicon, organic, and SiC interposers is characterized by their respective advantages and disadvantages, influencing performance, cost, and scalability [20][22][23]. - Silicon interposers are currently dominant but face challenges as chip sizes increase, while organic interposers are expected to gain market share due to cost advantages [22][26]. - SiC interposers, if successfully developed, could become the standard for cutting-edge AI and HPC packaging in the long term [26]. Group 6: Future Trends - In the short term, silicon interposers will remain the market leader, while organic interposers are anticipated to see widespread adoption in the mid-term due to their cost and scalability benefits [26]. - Long-term projections suggest that SiC interposers may emerge as the preferred choice for advanced packaging once manufacturing hurdles are overcome [26].
都盯上了中介层