Workflow
昔日王者TensorFlow,已死
量子位·2025-09-15 00:30

Core Viewpoint - The article discusses the decline of TensorFlow as an open-source framework, contrasting it with the rapid rise of PyTorch and other emerging projects in the AI open-source ecosystem [3][8][54]. Group 1: Decline of TensorFlow - TensorFlow's community activity peaked but has since declined to its lowest point, even lower than its inception [3][10]. - Ant Financial's open-source technology committee vice-chairman Wang Xu announced TensorFlow's removal from the latest open-source landscape map, indicating its diminishing relevance [6][8]. - The decline of TensorFlow reflects a broader trend in the AI open-source landscape, where project lifecycles are now measured in days rather than years [10][53]. Group 2: Open-Source Project Dynamics - The latest open-source landscape map (version 2.0) shows a significant turnover, with 39 new projects added and 60 existing projects removed, indicating a rapid evolution in the ecosystem [17][18]. - Projects that fail to maintain community engagement or lag in iteration speed are at risk of being excluded from the landscape [19][20][21]. - The competitive nature of the AI open-source ecosystem emphasizes the need for continuous innovation and effective community management to sustain project viability [24]. Group 3: New Paradigms in Open Source - The definition and operational model of open source are evolving, with some high-activity projects not adhering to traditional open-source licenses [26][30]. - The operational attributes of open source are becoming more pronounced, with platforms like GitHub serving as critical channels for product release and community engagement [31]. - New AI open-source projects are increasingly adopting customized licensing terms to balance community benefits with commercial interests, indicating a shift towards a more pragmatic approach to open source [32][33]. Group 4: Competitive Landscape - The focus of competition in the AI ecosystem has shifted from broad functionality to performance optimization, particularly in model serving and inference efficiency [35][44]. - The decline in activity for agent frameworks suggests a transition from exploratory phases to more practical, performance-driven applications [41][42]. - The emergence of high-performance inference engines highlights the importance of optimizing model serving to reduce operational costs and enhance application viability [43][44]. Group 5: Global Contribution Dynamics - The global AI open-source landscape is characterized by a "dual center" model, with the U.S. and China as the primary contributors, each excelling in different technological domains [46][49]. - U.S. developers lead in infrastructure contributions, while Chinese developers show strong growth in application innovation, driven by local market demands [51][52]. - The evolving contribution dynamics reflect a shift towards application-driven innovation, with real-world needs shaping the development of AI tools and solutions [50].